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Stochastic integration II: the Itô integral

We have seen in Lecture 6 how to integrate functions Φ : (0, T ) → L (H, E)
with respect to an H-cylindrical Brownian motion WH . In this lecture we
address the problem of extending the theory of stochastic integration to pro-
cesses Φ : (0, T )×Ω → L (H, E). As it turns out, very satisfactory results can
be obtained in the setting of UMD Banach spaces E. The reason for this is
that in these spaces we can prove a decoupling theorem for certain martingale
difference sequence which, in the context of stochastic integrals, enables us to
replace WH by an independent copy W̃H . The stochastic integral of Φ with
respect to W̃H can be defined path by path using the results of Lecture 6, and
the decoupling inequality allows us to translate integrability criteria for this
integral to the integral with respect to WH .

13.1 Decoupling

We begin with an abstract decoupling result for a suitable class of martingale
difference sequences.

Let 1 < p < ∞ be fixed and suppose that (ξn)N
n=1 is a sequence of centred

integrable random variables in Lp(Ω). We assume that a filtration (Fn)N
n=1

is given such that the following conditions are satisfied for n = 1, . . . , N :

(1) ξn is Fn-measurable for all 1 6 n 6 N ;
(2) ξn is independent of Fm for all 1 6 m < n 6 N .

Note that E(ξn|Fm) = Eξn = 0 for 1 6 m < n 6 N , so (ξn)N
n=1 is a martingale

difference sequence with respect to (Fn)N
n=1.

On the product space (Ω×Ω, F ×F , P×P) we define, with a slight abuse
of notation,

ξn(ω, ω̃) := ξn(ω), ξ̃n(ω, ω̃) := ξn(ω̃). (13.1)

The sequences (ξn)N
n=1 and (ξ̃n)N

n=1 are independent and identically dis-
tributed. The point here is that we identify each ξn with a random variable on
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Ω × Ω which depends only on the first coordinate and introduce an indepen-
dent copy ξ̃n which depends only on the second coordinate. Clearly, (ξn)N

n=1

and (ξ̃n)N
n=1 are martingale difference sequences on Ω×Ω with respect to the

filtrations (Fn)N
n=1 and (F̃n)N

n=1 defined by

Fn := Fn × {∅, Ω}, F̃n := {∅, Ω} × Fn, (13.2)

where again there is a slight abuse of notation in the first definition.
Let (vn)N

n=1 be a predictable sequence of E-valued random variables on Ω.
Recall that this means that vn is Fn−1-measurable for n = 1, . . . , N , with the
understanding that F0 = {∅, Ω} (so that v1 is constant almost surely). We
identify (vn)N

n=1 with a predictable sequence (vn)N
n=1 on Ω × Ω in the same

way as above by putting vn(ω, ω̃) := vn(ω).

Theorem 13.1 (Decoupling). If, in addition to the above assumptions, E

is a UMD-space, then

E

∥∥∥
N∑

n=1

ξnvn

∥∥∥
p

hp,E E

∥∥∥
N∑

n=1

ξ̃nvn

∥∥∥
p

with constants depending on p and E only.

Proof. The proof uses a trick similar to that of Theorem 12.15.
For n = 1, . . . , N define

d2n−1 := 1
2 (ξn + ξ̃n)vn and d2n := 1

2 (ξn − ξ̃n)vn.

We claim that (dj)
2N
j=1 is a martingale difference sequence with respect to the

filtration (Dj)
2N
j=1, where

D2n−1 = σ(Fn−1, F̃n−1, ξn + ξ̃n), D2n = σ(Fn, F̃n).

In view of

N∑

n=1

ξnvn =

2N∑

j=1

dj and

N∑

n=1

ξ̃nvn =

2N∑

j=1

(−1)j+1dj ,

the result then follows from the definition of the UMDp-property.
It remains to prove the claim. We begin by observing that (dn)2N

n=1 is
(Dn)2N

n=1-adapted. Moreover,

E(d2n|D2n−1)
(i)
= 1

2vnE(ξn − ξ̃n|Fn−1, F̃n−1, ξn + ξ̃n)

(ii)
= 1

2vnE(ξn − ξ̃n|ξn + ξ̃n)
(iii)
= 0.

Here (i) follows from the Fn−1-measurability of vn, (ii) from Proposition 11.7

and the independence of σ(ξn, ξ̃n) and σ(Fn−1, F̃n−1) (which follows from the



13.2 Stochastic integration 183

independence of ξn and Fn−1), and (iii) uses that ξn and ξ̃n are independent
and identically distributed (Exercise 11.2). Similarly,

E(d2n−1|D2n−2) = 1
2vnE(ξn + ξ̃n|Fn−1, F̃n−1) = 1

2vnE(ξn + ξ̃n) = 0

since ξn + ξ̃n is independent of σ(Fn−1, F̃n−1) and ξn, ξ̃n are centred. ⊓⊔

13.2 Stochastic integration

Let (Ω, F , P) be a probability space. A function Φ : (0, T )×Ω → L (H, E) is
said to be a finite rank adapted step process with respect to a given filtration
F = (Ft)t∈[0,T ] if it is of the form

Φ(t, ω) =
M∑

m=1

N∑

n=1

1(tn−1,tn)(t)1Amn
(ω)

k∑

j=1

hj ⊗ xjmn, (13.3)

where 0 6 t0 < · · · < tN 6 T , for each n = 1, . . . , N the sets A1n, . . . , AMn

are disjoint and belong to Ftn−1
, the vectors h1, . . . , hk ∈ H are orthonormal,

and the vectors xjmn belong to E.
In what follows we assume that WH is an H-cylindrical Brownian motion

on (Ω, F , P), adapted to F in the sense that the random variables WH(t)h
are Ft-measurable and the increments WH(t)h−WH(s)h are independent of
Fs for t > s. It follows from Exercise 11.4 that the filtration F

WH generated
by WH has these properties.

The stochastic integral with respect to WH of a finite rank adapted step
process Φ of the form (13.3) is defined as

∫ T

0

Φ(t) dWH (t) :=

M∑

m=1

N∑

n=1

1Amn

k∑

j=1

(WH(tn)hj − WH(tn−1)hj)xjmn.

We leave it to the reader to check that this definition does not depend on the

particular representation of Φ in (13.3). Note that
∫ T

0
Φ(t) dWH(t) belongs to

Lp(Ω, FT ; E) for all 1 6 p < ∞, and satisfies

E

∫ T

0

Φ(t) dWH(t) = 0.

The latter follows by linearity from

E
(
1Amn

(WH(tn)hj − WH(tn−1)hj)
)

= E
(
E(1Amn

(WH(tn)hj − WH(tn−1)hj)|Ftn−1
)
)

= E(1Amn
E(WH(tn)hj − WH(tn−1)hj)|Ftn−1

) = 0.
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For each ω ∈ Ω the trajectory t 7→ Φω(t) := Φ(t, ω) is a finite rank step
function and therewith defines an element RΦω

of γ(L2(0, T ; H), E). This
results in a simple random variable

RΦ : Ω → γ(L2(0, T ; H), E).

In order to extend the above stochastic integral to a more general class of
L (H, E)-valued processes we shall proceed as in Lecture 6 by estimating the
Lp(Ω; E)-norm of the stochastic integral in terms of RΦ. Due to the presence
of the random variables 1Amn

, however, the Gaussian computation of Theorem
6.14 breaks down. In the proof of the next theorem we circumvent this problem
by replacing WH by an independent copy W̃H and use the decoupling estimate
of Theorem 13.1.

Theorem 13.2 (Itô isomorphism). Let E be a UMD space and fix 1 < p <

∞. For all finite rank adapted step processes Φ : (0, T ) × Ω → L (H, E) we
have

E

∥∥∥
∫ T

0

Φ(t) dWH (t)
∥∥∥

p

hp,E E‖RΦ‖p

γ(L2(0,T ;H),E),

with constants depending only on p and E.

Proof. As in (13.1) we identify WH with an H-cylindrical Brownian motion

on the product Ω × Ω and define an independent copy on W̃H on Ω × Ω by
putting

WH(t)h(ω, ω̃) := WH(t)h(ω), W̃H(t)h(ω, ω̃) := WH(t)h(ω̃).

If Φ : (0, T )×Ω → L (H, E) is a finite rank adapted step process of the form
(13.3), we define the decoupled stochastic integral

∫ T

0

Φ(t) dW̃H(t) :=

N∑

n=1

M∑

m=1

1Amn

k∑

j=1

(
W̃H(tn)hj − W̃H(tn−1)hj

)
xjmn.

The plan of the proof is to apply Theorem 13.1 to the real-valued sequence
(ξjn) 16j6k

16n6N

and the E-valued sequence (vjn) 16j6k
16n6N

,

ξjn := WH(tn)hj − WH(tn−1)hj , vjn :=

M∑

m=1

1Amn
⊗ xjmn.

With these notations,

∫ T

0

Φ(t) dWH (t) =

N∑

n=1

k∑

j=1

ξjnvjn,

∫ T

0

Φ(t) dW̃H (t) =

N∑

n=1

k∑

j=1

ξ̃jnvjn.



13.2 Stochastic integration 185

We consider the filtration (Fjn) 16j6k
16n6N

, where Fjn is the σ-algebra gener-

ated by all ξj′n′ with (j′, n′) 6 (j, n); the pairs are ordered lexicographically
according to the rule (j′, n′) 6 (j, n) ⇐⇒ n′ < n or [n′ = n & j′ 6 j].

With respect to this filtration, the sequence (ξjn) 16j6k
16n6N

is centred and

has the properties (1) and (2) stated at the beginning of Section 13.1 and
(vjn)N

16j6k
16n6N

is predictable.

Let us denote by E1 and E2 the expectations with respect to the first and
second coordinate of Ω×Ω. Applying successively Theorem 13.1, the Kahane-
Khintchine inequality, and Theorem 6.14 (pointwise with respect to Ω1), we
obtain

E1E2

∥∥∥
∫ T

0

Φ(t) dWH(t)
∥∥∥

p

hp,E E1E2

∥∥∥
∫ T

0

Φ(t) dW̃H (t)
∥∥∥

p

hp,E E1

(
E2

∥∥∥
∫ T

0

Φ(t) dW̃H(t)
∥∥∥

2) p

2

hp,E E1‖RΦ‖p

γ(L2(0,T ;H),E). ⊓⊔

Definition 13.3. A random variable R ∈ Lp(Ω; γ(L2(0, T ; H), E)) is called
adapted if it belongs to the closure in Lp(Ω; γ(L2(0, T ; H), E)) of the finite
rank adapted step processes.

The closed subspace in Lp(Ω; γ(L2(0, T ; H), E)) of all adapted elements
with be denoted by L

p
F
(Ω; γ(L2(0, T ; H), E)). Theorem 13.2 shows that the

stochastic integral extends uniquely to an isomorphic embedding

JWH

T : L
p
F
(Ω; γ(L2(0, T ; H), E)) → Lp(Ω; E).

Definition 13.4. Let E be a Banach space and fix 1 < p < ∞. A process
Φ : (0, T ) × Ω → L (H, E) is said to be Lp-stochastically integrable with
respect to the H-cylindrical Brownian motion WH if there exists a sequence
of finite rank adapted step processes Φn : (0, T )× Ω → L (H, E) such that:

(1) for all h ∈ H we have limn→∞ Φnh = Φh in measure;

(2) there exists a random variable X ∈ Lp(Ω; E) such that lim
n→∞

∫ T

0

Φn dWH =

X in Lp(Ω; E).

The Lp-stochastic integral of Φ is then defined as

∫ T

0

ΦdWH := lim
n→∞

∫ T

0

Φn dWH .
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The remarks (a) and (b) following Definition 6.15 extend to the present
situation, but (c) is no longer automatic since stochastic integrals of step
processes are no longer Gaussian. This is the reason why the adjective ‘Lp-’
has been built into the definition.

Theorem 13.5. Let 1 < p < ∞. If Φ : (0, T ) × Ω → L (H, E) is Lp-
stochastically integrable with respect to WH , then the stochastic integral pro-
cess

( ∫ t

0
ΦdWH

)
t∈[0,T ]

is an E-valued Lp-martingale which has a continuous

version satisfying the maximal inequality

E

(
sup

t∈[0,T ]

∥∥∥
∫ t

0

ΦdWH

∥∥∥
p)

6
( p

p − 1

)p
E

∥∥∥
∫ T

0

ΦdWH

∥∥∥
p

.

Proof. Choose a sequence (Φn)n>1 of finite rank adapted step processes
such that the conditions of Definition 13.4 are satisfied and put Xn(t) :=∫ t

0 Φn dWH . Clearly, there exists a continuous version X̃n of each Xn, and

by the Pettis measurability theorem we have X̃n ∈ Lp(Ω; C([0, T ]; E)). To
see that this theorem can be applied in the present situation, first note
that there exists a separable closed subspace E0 of E such that each Xn

has trajectories in C([0, T ]; E0). The space C([0, T ]; E0) is separable, and
the linear span of the functionals δt ⊗ x∗ is norming in its dual; moreover,
〈Xn, δt ⊗ x∗〉 =

∫ t

0 Φ∗

nx∗ dWH almost surely and the right hand side is mea-
surable as a function on Ω.

By Doob’s maximal inequality (we use that the stochastic integral process
is a martingale; see Exercise 3), for every choice of 0 6 t1 < · · · < tN 6 T we
have

E
(

sup
j=1,...,N

‖X̃n(tj) − X̃m(tj)‖p
)

6
( p

p − 1

)p
E‖Xn(T ) − Xm(T )‖p.

Hence, by path continuity and Fatou’s lemma,

E
(

sup
t∈[0,T ]

‖X̃n(t) − X̃m(t)‖p
)

6
( p

p − 1

)p
E‖Xn(T ) − Xm(T )‖p.

This inequality shows that the sequence (X̃n)n>1 is a Cauchy sequence in
Lp(Ω; C([0, T ]; E)). Since for all t ∈ [0, T ] we have limn→∞ Xn(t) = X(t) in

Lp(Ω; E), the limit X̃ = limn→∞ X̃n defines a continuous version of X .
The final inequality follows from Doob’s maximal inequality in the same

way as above (replace X̃n − X̃m by X̃). ⊓⊔

As in Lecture 6, in the special case E = R we may identify L (H, R) with
H and Theorem 13.2 reduces to the statement that the Lp-stochastic integral
of an adapted step process φ : (0, T )× Ω → H satisfies

E

∥∥∥
∫ T

0

φdWH

∥∥∥
p

hp E‖φ‖p

L2(0,T ;H) (13.4)
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The constants depend only on p since the UMDp-constant of Hilbert spaces
only depend on p. From this it is not hard to see (Exercise 2) that a strongly
adapted measurable process φ : (0, T )×Ω → H is Lp-stochastically integrable
with respect to WH if and only if φ ∈ Lp(Ω; L2(0, T ; H)), and the isomorphism
(13.4) extends to this situation.

Definition 13.6. A process Φ : (0, T ) × Ω → L (H, E) is called H-strongly
measurable if for each h ∈ H the process Φh : (0, T ) × Ω → E is strongly
measurable. Such a process Φ is called adapted if for each h ∈ H the process
Φh is adapted.

We are now in a position to state the main result of this section, which
extends Theorem 6.17 to L (H, E)-valued processes.

Theorem 13.7. Let E be a UMD space and fix 1 < p < ∞. For an H-strongly
measurable adapted process Φ : (0, T )×Ω → L (H, E) the following assertions
are equivalent:

(1) Φ is Lp-stochastically integrable with respect to WH ;
(2) Φ∗x∗ ∈ Lp(Ω; L2(0, T ; H)) for all x∗ ∈ E∗, and there exists a random

variable X ∈ Lp(Ω; E) such that for all x∗ ∈ E∗,

〈X, x∗〉 =

∫ T

0

Φ∗x∗ dWH(t) in Lp(Ω).

(3) Φ∗x∗ ∈ Lp(Ω; L2(0, T ; H)) for all x∗ ∈ E∗, and there exists a random
variable R ∈ Lp(Ω; γ(L2(0, T ; H), E)) such that for all f ∈ L2(0, T ; H)
and x∗ ∈ E∗,

〈Rf, x∗〉 =

∫ T

0

〈Φ(t)f(t), x∗〉 dt in Lp(Ω).

If these equivalent conditions are satisfied, the random variables X and R are

uniquely determined, we have X =
∫ T

0
ΦdWH in Lp(Ω; E), and

E

∥∥∥
∫ T

0

ΦdWH

∥∥∥
p

hp,E E‖R‖p

γ(L2(0,T ;H),E).

Moreover, R ∈ L
p
F
(Ω; γ(L2(0, T ; H), E)), that is, R is adapted.

Proof. We sketch the main steps and refer to the Notes for more information.
(1)⇒(2): This is proved in the same way as in Theorem 6.17. Note that

the stochastic integrals
∫ T

0
Φ∗x∗ dWH are well-defined by the above remarks.

(2)⇒(3): For the special case where F is the filtration generated by WH ,
a proof will be outlined below.

(1)⇒(3): This is an immediate consequence of Theorem 13.2: if (Φn)∞n=1 is
an approximating sequence for Φ, then the operators (RΦn

)∞n=1 form a Cauchy
sequence in L

p
F
(Ω; γ(L2(0, T ; H), E)) and its limit has the desired properties.
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(3)⇒(1): First one shows that R is adapted (see Exercise 1). Knowing this,
the proof can be finished in the same way as the corresponding implication of
Theorem 6.17. ⊓⊔

Unfortunately we are not able to give a fully self-contained proof of the
implication (2)⇒(3). In the sequel we shall not need this implication; we only
use the equivalence (1)⇔(3) which is the most useful part of the theorem.
In spite of this we want to sketch a proof of (2)⇒(3) under the simplifying
assumption that the filtration is the one generated by WH . In this situation we
can apply a version of the so-called martingale representation theorem for H-
cylindrical Brownian motions WH . In most textbook proofs, the integrator is a
Brownian motion (or a more general martingale); the extension to cylindrical
Brownian motions is obtained from it by an approximation argument as in
the proof of the martingale convergence theorem (Theorem 11.21).

Recall that the filtration F
WH has been defined in Exercise 11.4.

Lemma 13.8. Let 1 < p < ∞ and ξ ∈ Lp(Ω, FWH

T ). There exists unique
φ ∈ L

p

F
WH

(Ω; L2(0, T ; H)) such that

ξ = Eξ +

∫ T

0

φdWH .

The proof of this lemma is beyond the scope of these lectures. Roughly
speaking it proceeds like this. First, we may assume that Eξ = 0. By approx-
imation we may further assume that H is finite-dimensional. From

WH(t)h =

∫ T

0

1(0,t) ⊗ h dWH(t)

we see that every X in the linear span of the random variables WH(t)h can
be represented by a stochastic integral. Since the stochastic integral defines
an isomorphic embedding, it remains to show that this span is dense in the
closed subspace of Lp(Ω, FWH

T ; H) consisting of all mean 0 elements.
The next result extends the lemma to UMD spaces. Recall that

JWH

T : L
p
F
(Ω; γ(L2(0, T ; H), E)) → Lp(Ω; E)

is the isomorphic embedding of Theorem 13.2.

Theorem 13.9. Let E be a UMD space, let 1 < p < ∞, and let X ∈
Lp(Ω, FWH

T ; E). There exists a unique R ∈ L
p

F
WH

(Ω; γ(L2(0, T ; H), E)) such
that

X = EX + JWH

T (R).

Proof. Choose a sequence of simple F
WH

T -measurable random variables Xn

such that limn→∞ Xn = X in Lp(Ω; E). Let us write Xn =
∑Mn

m=1 1Amn
⊗xmn.
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By Lemma 13.8, there exist unique processes φmn ∈ L
p

F
WH

(Ω; L2(0, T ; H))
such that

1Amn
= E1Amn

+

∫ T

0

φmn dWH .

Put Φn(t)h :=
∑M

m=1[φmn, h]xmn. The process Φn : (0, T )×Ω → L (H, E) is
Lp-stochastically integrable with respect to WH and

Xn = EXn +

∫ T

0

Φn dWH .

Let Rn ∈ L
p
F
(Ω; γ(L2(0, T ; H), E) be defined by

Rn(ω)f :=

Mn∑

m=1

φmn(ω) ⊗ xmn, f ∈ L2(0, T ; H).

Since limn→∞ Xn = X in Lp(Ω; E), the isomorphism of Theorem 13.2 implies
that the sequence (Rn)∞n=1 is Cauchy in Lp(Ω; γ(L2(0, T ; H), E)). The limit
R has the desired properties.

Uniqueness follows from the injectivity of JWH

T . ⊓⊔

As a corollary we observe that the stochastic integral defines an isomor-
phism of Banach spaces

JWH

T : L
p

F
WH

(Ω; γ(L2(0, T ; H), E)) ≃ L
p
0(Ω, FWH

T ; E),

where L
p
0(Ω, FWH

T ; E) is the closed subspace of Lp(Ω, FWH

T ; E) consisting of
all elements with mean 0.

Proof (Proof of Theorem 13.7 (2)⇒(3) for the filtration F
WH ). By the Pettis

measurability theorem, the random variable X belongs to L
p
0(Ω, FWH

T ; E).
The element R provided by Theorem 13.9 has the desired properties. ⊓⊔

13.3 Stochastic integrability of L
p-martingales

We return to the setting where WH is an H-cylindrical Brownian motion,
adapted to a filtration F. The main result of this section states that if E is a
UMD space and M is a γ(H, E)-valued Lp-martingale with respect to F, then
M is Lp-stochastically integrable with respect to WH . The proof has three
ingredients: the characterisation of Lp-stochastic integrability (the equivalence
(1)⇔(3) of Theorem 13.7)), the γ-multiplier theorem (Theorem 9.14), and the
vector-valued Stein inequality (Theorem 12.15).

Theorem 13.10. Let E be a UMD space and fix 1 < p < ∞. Let WH be
an H-cylindrical Brownian motion, adapted to a filtration F, and let M :
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[0, T ] × Ω → γ(H, E) be an Lp-martingale with respect to F. Then M is Lp-
stochastically integrable with respect to WH and we have

(
E

∥∥∥
∫ T

0

M(t) dWH(t)
∥∥∥

p) 1

p

.p,E

√
T

(
E‖M(T )‖p

γ(H,E)

) 1

p ,

with a constant depending only on p and E.

Proof. First we prove the result under the additional assumption that M(T ) ∈
L∞(Ω; γ(H, E)). By the L∞-contractivity of the conditional expectation we
then have M ∈ L∞((0, T ) × Ω; γ(H, E)). In particular, for all x∗ ∈ E∗ we
have M∗x∗ ∈ Lp(Ω; L2(0, T ; H)), and even M∗x∗ ∈ L

p
F
(Ω; L2(0, T ; H)) since

M is adapted.
Let us write B := Lp(Ω; E) for brevity. Define the bounded function N :

[0, T ] → L (B) by

N(t)ξ := E(ξ|Ft), ξ ∈ B, t ∈ [0, T ].

Since E is a UMD space, by Theorem 12.15 the family {N(t) : t ∈ [0, T ]}
is R-bounded on B, and therefore γ-bounded, with γ-bound depending only
on p and E. By Theorem 11.21, for every ξ ∈ B the function t 7→ N(t)ξ
has left limits at every point [0, T ]. In particular, these functions are strongly
measurable.

By the γ-Fubini isomorphism (Theorem 5.22), for each t ∈ [0, T ] we may
identify the random variable M(t) ∈ Lp(Ω; γ(H, E)) with a unique operator

M̃(t) ∈ γ(H, B) by the formula (M̃(t)h)(ω) = M(t, ω)h. Define a constant
function G : [0, T ] → γ(H, B) by

G(t) := M̃(T ), t ∈ [0, T ].

This function represents the element RG ∈ γ(L2(0, T ; H), B) satisfying

‖RG‖γ(L2(0,T ;H),B) =
√

T ‖M̃(T )‖γ(H,B) hp

√
T

(
E‖M(T )‖p

γ(H,E)

) 1

p ,

where we used the result of Exercise 5.3.
By the martingale property, for all t ∈ [0, T ] we have M̃(t) = N(t)M̃(T )

in B. Now we apply Theorem 9.14 to conclude that M̃ represents an element
R ∈ γ(L2(0, T ; H), B) satisfying

‖R‖γ(L2(0,T ;H),B) .p,E ‖RG‖γ(L2(0,T ;H),B).

Using Theorem 5.22 once more, we can identify R with an element X ∈
Lp(Ω; γ(L2(0, T ; H), E)) by the formula X(ω)f = (Rf)(ω). Below we check
that X∗x∗ = M∗x∗ in Lp(Ω; L2(0, T ; H)) for all x∗ ∈ E∗. Assuming this for
the moment, it follows from Theorem 13.7(3)⇒(1) that M is Lp-stochastically
integrable and satisfies
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(
E

∥∥∥
∫ T

0

M(t) dWH(t)
∥∥∥

p) 1

p

hp,E

(
E‖X‖p

γ(L2(0,T ;H),E)

) 1

p

hp ‖R‖γ(L2(0,T ;H),B) .p,E

√
T (E‖M(T )‖p

γ(H,E))
1

p .

To prove that X∗x∗ = M∗x∗ for all x∗ ∈ E∗, let f ∈ L2(0, T ; H) and
x∗ ∈ E∗ be arbitrary and note that for all A ∈ F ,

E(〈Mf, x∗〉1A) =

∫

Ω

∫ T

0

〈M(t, ω)f(t), x∗〉1A(ω) dt dP (ω)

=

∫ T

0

∫

Ω

〈M(t, ω)f(t), x∗〉1A(ω) dP (ω) dt

= E

∫ T

0

〈M̃(t)f(t), 1A ⊗ x∗〉 dt

= E〈Rf, 1A ⊗ x∗〉 = E(〈Xf, x∗〉1A).

To conclude the proof we remove the assumption M(T ) ∈ L∞(Ω; E).
Choose a sequence of FT -measurable simple random variables Mn(T ) con-
verging to M(T ) in Lp(Ω; E), and define Mn(t) := E(Mn(T )|Ft). Since
Mn(T ) ∈ L∞(Ω; E), we may apply what we proved above to the martingales
Mn. We obtain that each Mn is Lp-stochastically integrable with respect to
WH and

(
E

∥∥∥
∫ T

0

Mn(t) dWH(t)
∥∥∥

p) 1

p

6 C
√

T
(
E‖Mn(T )‖p

γ(H,E)

) 1

p ,

with a constant C independent of n. Similarly, by the above applied to the

martingales Mn−Mm, we find that the stochastic integrals
∫ T

0
Mn(t) dWH(t)

are Cauchy in Lp(Ω; E). By the Itô isomorphism, this means that the cor-
responding elements Rn ∈ L

p
F
(Ω; γ(L2(0, T ; H), E)) are Cauchy and there-

fore converge to a limit R ∈ L
p
F
(Ω; γ(L2(0, T ; H), E)). Clearly, R∗x∗ =

limn→∞ R∗

nx∗ = limn→∞ M∗

nx∗ = M∗x∗ in Lp(Ω; L2(0, T ; H)), and the con-
clusion of the theorem now follows via Theorem 13.7. ⊓⊔

13.4 Exercises

In the exercises 1-3 we fix 1 < p < ∞.

1. In this exercise we compare the two notions of adaptedness given in Def-
initions 13.3 and 13.6.
a) Show that R ∈ Lp(Ω; γ(L2(0, T ; H), E)) is adapted if and only if the

random variables R(1(0,t)f) : Ω → E have strongly Ft-measurable
versions for all t ∈ (0, T ) and f ∈ L2(0, T ; H).
Hint: For the ‘if’ part, approximate with simple random variables and
use that the finite rank step functions are dense in γ(L2(0, T ; H), E).
To secure adaptedness, build in a small shift before approximating.
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Now suppose that Φ : (0, T ) → L (H, E) is H-strongly measurable and
assume that the conditions of Theorem 13.7 (3) be satisfied; let R ∈
Lp(Ω; γ(L2(0, T ; H), E)) be as in (3).

b) Show that if Φ is adapted, then R is adapted.

2. In the discussion after Definition 13.4 it was observed that a strongly mea-
surable adapted process φ : (0, T )×Ω → H is Lp-stochastically integrable
with respect to WH if and only if φ ∈ Lp(Ω; L2(0, T ; H)). Prove this.
Hint: If φ ∈ Lp(Ω; L2(0, T ; H)), then by the previous exercise φ is adapted
as an element of Lp(Ω; L2(0, T ; H)).

3. Let Φ : (0, T )×Ω → L (H, E) be Lp-stochastically integrable with respect

to WH . Show that the stochastic integral process
( ∫ t

0 ΦdWH

)
t∈[0,T ]

is a

martingale.
Hint: Approximate with finite rank adapted step processes.

If E is a UMD space with type 2 and Φ : (0, T )×Ω → γ(H, E) is an adapted
and strongly measurable process such that

E

∫ T

0

‖Φ(t)‖2
γ(H,E) dt < ∞,

then Φ is stochastically integrable with respect to H-cylindrical Brownian
motions WH ; this follows from Theorem 13.7 and Exercise 5.4. In the next
two exercises we show that the UMD assumption can essentially be dropped
from this statement.

4. A Banach space E has martingale type p ∈ [1, 2] if there exists a constant
Mp(E) such that for any Lp-martingale sequence (dn)N

n=1 with values in
E we have

E

∥∥∥
N∑

n=1

dn

∥∥∥
p

6 (Mp(E))p

N∑

n=1

E‖dn‖p.

a) Show that every martingale type p space has type p.
b) Show that every UMD space with type p has martingale type p.

In both cases, give relations between the constants.

c) Deduce that Lp-spaces, 1 < p < ∞, have martingale type min{p, p′},
where 1

p
+ 1

p′
= 1.

5. Let E be a martingale type 2 space.

a) Show that if WH is an H-cylindrical Brownian motion and Φ : (0, T )×
Ω → L (H, E) is an adapted finite rank step process, then

E

∥∥∥
∫ T

0

ΦdWH

∥∥∥
2

6 (M2(E))2 E

∫ T

0

‖Φ(t)‖2
γ(H,E) dt.
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b) Conclude that if Φ : (0, T ) × Ω → γ(H, E) is an adapted strongly
measurable process satisfying

E

∫ T

0

‖Φ(t)‖2 dt < ∞,

then Φ is stochastically integrable with respect to WH , with the same
estimate as before.

Notes. A systematic treatment of decoupling inequalities is presented in the
monograph of Gine and de la Peña [31]. The proof of the decoupling in-
equality (Theorem 13.1) is based on an idea of Montgomery-Smith [78].

The idea to use decoupling inequalities for obtaining bounds on stochastic
integrals in UMD spaces was first used by Garling [40], who only consid-
ered step processes and used the resulting estimates to investigate certain
geometric properties of UMD spaces. Using a more delicate decoupling re-
sult together with Burkholder’s characterisation of UMD spaces through
ζ-convexity (Theorem 12.17), McConnell [75] proved that a UMD-valued
process is stochastically integrable if almost surely its trajectories are stochas-
tically integrable with respect to an independent copy of the Brownian motion.
In view of Theorem 6.17 this result can be viewed as an ‘almost sure’ version
of the implication (3)⇒(1) of Theorem 13.7.

Our approach to vector-valued stochastic integration in UMD spaces via
γ-radonifying norms is taken from [82], where Theorem 13.7 was proved. In
that paper, McConnell’s result is recovered using a stopping time argument.

The equivalence of norms in (13.4) is a special case of an inequality of
Burkholder, Davis, Gundy which, in the more general situation where the
integrator is a continuous-time martingale M , relates the norms of stochastic
integrals to the norms of the quadratic variation process of M . For more
details we refer to Karatzas and Shreve [59], Revuz and Yor [94], or
Kallenberg [55].

An alternative proof of the implication (2)⇒(3) of Theorem 13.7, which is
based on finite-dimensional approximations, covariance domination, and the
theorem of Hoffmann-Jorgensen and Kwapień (Theorem 5.9) is given in
[82]. A detailed proof of the implication (3)⇒(1) is contained in [81].

A systematic theory of stochastic integration in martingale type 2 space
has been developed by Neidhardt [85], Dettweiler [33], and Brzeźniak

[13]. The first two authors assumed that E be 2-uniformly smooth, a property
which was subsequently shown to be equivalent to the martingale type 2
property by Pisier [91]. For an overview, see Brzeźniak [15].


