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Linear equations with multiplicative noise

In this lecture we study stochastic evolution equations with multiplicative
noise of the form

{
dU(t) = AU(t) dt + B(U(t)) dWH(t), t ∈ [0, T ],

U(0) = u0.
(SCP)

Under suitable assumptions on E, the semigroup S generated by A on E,
and the function B : E → γ(H, E), we shall prove existence, uniqueness, and
Hölder regularity of mild solutions. Such a solution is defined as an adapted
process U such that for all t ∈ [0, T ] we have

U(t) = S(t)u0 +

∫ t

0

S(t − s)B(U(s)) dWH (s) (14.1)

almost surely. Its existence and uniqueness is proved by a fixed point argument
in the completion V p

θ (Ω; γ(L2(0, T ), E)) of the space of all adapted finite rank
step processes φ : (0, T ) × Ω → E such that

s 7→ (t − s)−θφ(s) belongs to Lp(Ω; γ(L2(0, t), E)),

uniformly with respect to 0 < t 6 T . The reason for working in this compli-
cated space is the fact that in many applications (e.g. when S is an analytic
semigroup) the set {tθS(t) : t ∈ (0, T )} is γ-bounded.

The strategy for the fixed point argument is as follows. First, we find
conditions on B which guarantee that it acts as a Lipschitz map from
V p

θ (Ω; γ(L2(0, T ), E)) to V p
θ (Ω; γ(L2(0, T ; H), E)). Note that under these con-

ditions, the stochastic integrals in (14.1) are well defined by the results of the
previous lecture. Then, we prove that the process on the right hand side of
(14.1) is in V p

θ (Ω; γ(L2(0, T ), E)) again.
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14.1 γ-Lipschitz functions

Let H be a non-zero Hilbert space, let E and F be Banach spaces, and let
(γmn)∞m,n=1 and (γn)∞n=1 be Gaussian sequences.

Proposition 14.1. Let B : E → γ(H, F ) be a function such that Bh : E → F
is strongly measurable for all h ∈ H, and let C > 0 be a constant. The

following assertions are equivalent:

(1) for all orthonormal sequences (hm)M
m=1 in H and all sequences (xn)N

n=1

and (yn)N
n=1 in E,

E

∥∥∥
M∑

m=1

N∑

n=1

γmn(B(xn) − B(yn))hm

∥∥∥
2

6 C2
E

∥∥∥
N∑

n=1

γn(xn − yn)
∥∥∥

2

;

(2) for all simple functions φ1, φ2 : (0, T ) → E we have B(φ1), B(φ2) ∈
γ(L2(0, T ; H), F ) and

‖B(φ1) − B(φ2)‖γ(L2(0,T ;H),F ) 6 C‖φ1 − φ2‖γ(L2(0,T ),E);

(3) for all σ-finite measure spaces (A, A , µ) and all µ-simple functions φ1, φ2 :
A → E we have B(φ1), B(φ2) ∈ γ(L2(A; H), F ) and

‖B(φ1) − B(φ2)‖γ(L2(A;H),F ) 6 C‖φ1 − φ2‖γ(L2(A),E).

Note that if H is separable, then Bh : E → F is strongly measurable for
all h ∈ H if and only if B : E → γ(H, F ) is strongly measurable; this is
proved in Proposition 5.14 (with strong µ-measurability replaced by strong
measurability).

Proof. Let us first prove that (1) is equivalent to

(1′) for all orthonormal sequences (hm)M
m=1 in H , all sequences (an)N

n=1 of
positive real numbers and all sequences (xn)N

n=1 and (yn)N
n=1 in E,

E

∥∥∥
M∑

m=1

N∑

n=1

anγmn(B(xn) − B(yn))hm

∥∥∥
2

6 C2
E

∥∥∥
N∑

n=1

anγn(xn − yn)
∥∥∥

2

.

For integers an, the equivalence follows by applying (1) with the xn and yn

repeated an times and noting that the sum of an independent standard Gaus-

sians γ
(1)
n + · · ·+γ

(an)
n has the same distribution as anγn. The case of rational

an is readily reduced to this, and the general case follows by approximation.
The equivalence of (1′), (2), (3) follows from the following general observa-

tion. Let (A, A , µ) be any σ-finite measure space. If (hm)M
m=1 is orthonormal

in H and φ1 =
∑N

n=1 1An
⊗xn and φ2 =

∑N
n=1 1An

⊗yn are µ-simple functions
with values in E, with the sets An disjoint, then by Lemma 5.7 (noting that
the sequence ( 1√

µ(An)
1An

)N
n=1 is orthonormal in L2(A)),
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‖B(φ1)−B(φ2)‖2
γ(L2(A;H),F ) = E

∥∥∥
M∑

m=1

N∑

n=1

√
µ(An)γnm(B(xn)−B(yn))hm

∥∥∥
2

and

‖φ1 − φ2‖2
γ(L2(A),E) = E

∥∥∥
N∑

n=1

√
µ(An)γn(xn − yn)

∥∥∥
2

. ⊓⊔

Note that if (A, A , µ) is a σ-finite measure space with µ(A) 6= 0 and
B : E → L (H, F ) is a function such that B(φ) ∈ γ(L2(A; H), F ) for every
µ-simple function φ : A → E, then B(x) ∈ γ(H, F ) for all x ∈ E. Indeed,
consider any set A0 ∈ A with 0 < µ(A0) < ∞. Then B(1A0

⊗x) = 1A0
⊗B(x)

belongs to γ(L2(A; H), F ), which is only possible if B(x) ∈ γ(H, F ). This
explains why we restrict ourselves to functions B : E → γ(H, F ).

Definition 14.2. A strongly measurable function B : E → γ(H, F ) is called

γ-Lipschitz continuous if the equivalent conditions of Proposition 14.1 hold.

The least possible constant in these conditions is denoted by Lipγ(B).

By taking H = R we obtain the notion of a γ-Lipschitz continuous function
from E to F . Clearly, every γ-Lipschitz continuous function B : E → F is
Lipschitz continuous and we have Lip(B) 6 Lipγ(B).

It is a natural question whether conversely Lipschitz functions are au-
tomatically γ-Lipschitz. In this direction we have the following result (cf.
Exercise 3), which gives a first example of γ-Lipschitz continuous mappings.

Example 14.3. If F has type 2, then every Lipschitz function B : E → γ(H, F )
is γ-Lipschitz continuous and we have Lip(B) 6 Lipγ(B) 6 T γ

2 Lip(B), where
T γ

2 is the Gaussian type 2 constant of F .

This result actually characterises the type 2 property; see the Notes at
the end of the lecture. Further examples of γ-Lipschitz continuous mappings,
relevant for applications to stochastic PDEs, will be given in the next lecture.

14.2 Pisier’s property

Our next aim is to prove certain weighted bounds for stochastic convolutions.
In order to keep the technicalities at a reasonable level we shall assume an
additional geometric property on the underlying Banach space E, first studied
by Pisier.

Let (r′j)
∞

j=1 and (r′′k )∞k=1 be Rademacher sequences on probability spaces
(Ω′, F ′, P′) and (Ω′′, F ′′, P′′), and let (rjk)∞j,k=1 be a doubly indexed Rade-
macher sequence on a probability space (Ω, F , P). In the next result, recall
that (r′jr

′′

k )∞j,k=1 is not a Rademacher sequence (see Exercise 3.2).

Proposition 14.4. For a Banach space E the following assertions are equiv-

alent:
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(1) there exists a constant 0 < C < ∞ such that for all finite sequences

(ajk)n
j,k=1 in R and (xjk)n

j,k=1 in E we have

E
′
E
′′

∥∥∥
n∑

j,k=1

ajkr′jr
′′

kxjk

∥∥∥
2

6 C2
(

max
16j,k6n

|ajk|
)
E
′
E
′′

∥∥∥
n∑

j,k=1

r′jr
′′

kxjk

∥∥∥
2

;

(2) there exists a constant 0 < C < ∞ such that for all finite sequences

(xjk)n
j,k=1 in E we have

1

C2
E

∥∥∥
n∑

j,k=1

rjkxjk

∥∥∥
2

6 E
′
E
′′

∥∥∥
n∑

j,k=1

r′jr
′′

kxjk

∥∥∥
2

6 C2
E

∥∥∥
n∑

j,k=1

rjkxjk

∥∥∥
2

.

Condition (1) means that the analogue of the Kahane contraction principle
holds for double Rademacher sums in E.

Proof. (1)⇒(2): By randomisation and Fubini’s theorem, from (1) we obtain

E

∥∥∥
M∑

m=1

N∑

n=1

rmnxmn

∥∥∥
2

= E
′
E
′′
E

∥∥∥
M∑

m=1

N∑

n=1

rmnr′mr′′nxmn

∥∥∥
2

= EE
′
E
′′

∥∥∥
M∑

m=1

N∑

n=1

rmnr′mr′′nxmn

∥∥∥
2

6 C2
EE

′
E
′′

∥∥∥
M∑

m=1

N∑

n=1

r′mr′′nxmn

∥∥∥
2

= C2
E
′
E
′′

∥∥∥
M∑

m=1

N∑

n=1

r′mr′′nxmn

∥∥∥
2

.

This gives the left hand side inequality in (2).
To prove the right hand side inequality in (2) we fix numbers εmn ∈ {−1, 1}

and use (1) to obtain

E
′
E
′′

∥∥∥
M∑

m=1

N∑

n=1

r′mr′′nxmn

∥∥∥
2

= E
′
E
′′

∥∥∥
M∑

m=1

N∑

n=1

ε2
mnr′mr′′nxmn

∥∥∥
2

6 C2
E
′
E
′′

∥∥∥
M∑

m=1

N∑

n=1

εmnr′mr′′nxmn

∥∥∥
2

.

Taking εmn = rmn(ω) and taking expectations,

E
′
E
′′

∥∥∥
M∑

m=1

N∑

n=1

r′mr′′nxmn

∥∥∥
2

6 C2
EE

′
E
′′

∥∥∥
M∑

m=1

N∑

n=1

rmnr′mr′′nxmn

∥∥∥
2

= C2
E
′
E
′′
E

∥∥∥
M∑

m=1

N∑

n=1

rmnr′mr′′nxmn

∥∥∥
2

= C2
E

∥∥∥
M∑

m=1

N∑

n=1

rmnxmn

∥∥∥
2

.

(2)⇒(1): This implication follows from the Kahane contraction principle,
which may be applied to the outer terms in (2). ⊓⊔
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It can be shown that in (1) and (2), the role of Rademacher variables
may be replaced by Gaussian variables without changing the class of spaces
under consideration; this only affects the numerical value of the constants in
the inequalities (a proof of the easy implication is contained in the proof of
Proposition 14.7 below). Furthermore, in both formulations the exponent 2
may be replaced by an arbitrary p ∈ [1,∞). For Rademacher variables this
was shown in the solution to Exercise 3.3; the proof for Gaussian variables is
the same.

Definition 14.5. A Banach space is said to have Pisier’s property if it sat-

isfies the equivalent conditions of the proposition.

Example 14.6. If (A, A , µ) is a σ-finite measure space, then for all 1 6 p <
∞ the space Lp(A) has Pisier’s property. More generally, if E has Pisier’s
property, then Lp(A; E) has Pisier’s property.

In view of the remarks preceding the definition, the second assertion follows
by switching to power p and using Fubini’s theorem. For the first assertion
it then remains to be verified that R has Pisier’s property. But this is the
content of Exercise 3.3; the same argument shows that every Hilbert space
has Pisier’s property.

The next proposition connects Pisier’s property with the theory of γ-
radonifying operators.

Proposition 14.7. Let H be a Hilbert space. If E has Pisier’s property, then

one has a canonical isomorphism of Banach spaces

γ(L2(0, T ), γ(L2(0, T ; H), E)) ≃ γ(L2((0, T )2; H), E).

Proof. As in the proof of Theorem 3.12, from the central limit theorem we
deduce that condition (2) of Proposition 14.4 implies its Gaussian counterpart

1

C2
E

∥∥∥
n∑

j,k=1

γjkxjk

∥∥∥
2

6 E
′
E
′′

∥∥∥
n∑

j,k=1

γ′

jγ
′′

kxjk

∥∥∥
2

6 C2
E

∥∥∥
n∑

j,k=1

γjkxjk

∥∥∥
2

.

Let the sets Aj be measurable and disjoint and also let the sets Bj be
measurable and disjoint, and let h1, . . . , hn be orthonormal in H . Consider
the step function

f =

n∑

j,k,l=1

1Aj
⊗ ((1Bk

⊗ hl) ⊗ xjkl) =

n∑

j,k,l=1

((1Aj
⊗ 1Bk

) ⊗ hl) ⊗ xjkl .

The first sum is interpreted as an element of γ(L2(0, T ), γ(L2(0, T ; H), E)) and
the second as an element of γ(L2((0, T )2; H), E). For such f , the estimate

1

C
‖f‖γ(L2((0,T )2;H),E) 6 ‖f‖γ(L2(0,T ),γ(L2(0,T ;H),E)) 6 C‖f‖γ(L2((0,T )2;H),E)

is a reformulation of the above Gaussian estimate. The result follows from
this by an approximation argument. ⊓⊔
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14.3 Stochastic convolutions

We shall now apply Proposition 14.7 to estimate stochastic convolutions.
Let S : (0, T ) → L (E, F ) be strongly measurable in the sense that Sx

is strongly measurable for all x ∈ E. Let WH be an H-cylindrical Brownian
motion, adapted to a filtration (Ft)t∈[0,T ]. Given an adapted operator-valued
process Φ : (0, T )× Ω → L (H, E), we introduce the notation

(S ⋄ Φ)(t) :=

∫ t

0

S(t − s)Φ(s) dWH (s), t ∈ [0, T ],

provided these stochastic integrals exist.

Lemma 14.8. Let E and F be Banach spaces, where F is UMD and has

Pisier’s property, and let S : (0, T ) → L (E, F ) be as above. Let Φ : (0, T ) ×
Ω → L (H, E) be H-strongly measurable and adapted. Let 1 < p < ∞ and fix

0 6 θ < 1
2 . Suppose that:

(1) the set {tθS(t) : t ∈ [0, T ]} is γ-bounded in L (E, F );
(2) the process t 7→ (T − t)−θΦ(t) belongs to Lp(Ω; γ(L2(0, T ; H), E)).

Then the process t 7→ (T−t)−θ(S⋄Φ)(t) is well defined, H-strongly measurable

and adapted, and defines an element of Lp(Ω; γ(L2(0, T ), F )). Moreover,

‖t 7→ (T − t)−θ(S ⋄ Φ)(t)‖Lp(Ω;γ(L2(0,T ),F ))

6 CT
1
2
−θ‖t 7→ (T − t)−θΦ(t)‖Lp(Ω;γ(L2(0,T ;H),E)),

where C is independent of T and Φ.

Proof. Let us first note that s 7→ S(t − s)Φ(s) is H-strongly measurable and
adapted on (0, t). Moreover, by Theorem 9.14 and the assumptions (1) and
(2), this function defines an element of Lp(Ω; γ(L2(0, t; H), F )). Theorem 13.7
therefore shows that it is Lp-stochastically integrable on (0, t) with respect to
WH . This shows that the process S ⋄ Φ is well-defined. The proof that it is
H-strongly measurable and adapted is a bit tedious and is left to the reader.

Let ∆ := {(t, s) ∈ (0, T )2 : 0 < s < t < T}. We estimate

‖t 7→ (T − t)−θ(S ⋄ Φ)(t)‖Lp(Ω;γ(L2(0,T ),F ))

(i)
h

∥∥∥t 7→ (T − t)−θ

∫ t

0

S(t − s)Φ(s) dWH(s)
∥∥∥

γ(L2(0,T ),Lp(Ω;F ))

(ii)
h

∥∥t 7→ (T − t)−θ[s 7→ 1(0,t)(s)S(t − s)Φ(s)]
∥∥

γ(L2(0,T ),Lp(Ω;γ(L2(0,T ;H),F )))

(iii)
h

∥∥t 7→ (T − t)−θ[s 7→ 1(0,t)(s)S(t − s)Φ(s)]
∥∥

γ(L2(0,T ),γ(L2(0,T ;H),Lp(Ω;F )))

(iv)
h

∥∥(t, s) 7→ 1∆(t, s)(T − t)−θS(t − s)Φ(s)
∥∥

γ(L2((0,T )2;H),Lp(Ω;F )))

(v)

.
∥∥(t, s) 7→ 1∆(t, s)(T − t)−θ(t − s)−θΦ(s)

∥∥
γ(L2((0,T )2;H),Lp(Ω;E)))

.
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The justification of these steps is as follows: (i) follows from the γ-Fubini iso-
morphism of Theorem 5.22, (ii) combines Theorem 13.7 with the observation
that each bounded operator S from E1 to F1 canonically induces a bounded
operator from γ(L2(0, T ), E1) to γ(L2(0, T ); F1), (iii) follows again from the γ-
Fubini isomorphism, (iv) uses Pisier’s property of the space Lp(Ω; F ) (cf. Ex-
ample 14.6) through Proposition 14.7, and (v) follows from the γ-boundedness
assumption.

Consider the operator P : L2(0, T ; H) → L2((0, T )2; H) defined by

(Pf)(t, s) := 1∆(t, s)(T − t)−θ(t − s)−θ(T − s)θf(s).

This operator is bounded of norm ‖P‖ 6 CT
1
2
−θ, since

∫ T

0

∫ t

0

(T − t)−2θ(t − s)−2θ(T − s)2θ‖f(s)‖2 ds dt

=

∫ T

0

(T − s)2θ‖f(s)‖2
( ∫ T

s

(T − t)−2θ(t − s)−2θ dt
)

ds

=

∫ T

0

(T − s)1−2θ‖f(s)‖2
( ∫ 1

0

(1 − r)−2θr−2θ dr
)

ds

6 C2T 1−2θ

∫ T

0

‖f(s)‖2 ds,

where C2 :=
∫ 1

0 (1 − r)−2θr−2θ dr depends only on θ. Using the right ideal
property of Proposition 5.11 it follows that

∥∥(t, s) 7→ 1∆(t, s)(T − t)−θ(t − s)−θΦ(s)
∥∥

γ(L2((0,T )2;H),Lp(Ω;E))

6 CT
1
2
−θ

∥∥s 7→ (T − s)−θΦ(s)
∥∥

γ(L2(0,T ;H),Lp(Ω;E))

h CT
1
2
−θ

∥∥s 7→ (T − s)−θΦ(s)
∥∥

Lp(Ω;γ(L2(0,T ;H),E))
. ⊓⊔

For θ > 0 and 1 6 p < ∞ we define the Banach space

V p
θ (Ω; γ(L2(0, T ; H), E))

as the completion of the space of all adapted finite rank step processes Φ :
(0, T ) × Ω → L (H, E) with respect to the norm

‖Φ‖V
p

θ
(Ω;γ(L2(0,T ;H),E)) := sup

t∈(0,T ]

‖s 7→ (t − s)−θΦ(s)‖Lp(Ω;γ(L2(0,t;H),E)).

We write V p
θ (Ω; γ(L2(0, T ), E)) instead of V p

θ (Ω; γ(L2(0, T ; R), E)).
By applying Lemma 14.8 to the subintervals (0, t) we obtain:

Proposition 14.9. Let E, F , S, θ be as in Lemma 14.8. Then for all 1 <
p < ∞ the stochastic convolution Φ 7→ S ⋄Φ acts as a bounded linear operator

from V p
θ (Ω; γ(L2(0, T ), E)) to V p

θ (Ω; γ(L2(0, T ; H), F )) of norm 6 CT
1
2
−θ.
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For γ-Lipschitz continuous mappings B : E → L (H, F ) we have the
following mapping property:

Proposition 14.10. If B : E → L (H, F ) is γ-Lipschitz continuous, then for

all θ > 0 and 1 6 p < ∞ the map B acts as a Lipschitz continuous map-

ping from V p
θ (Ω; γ(L2(0, T ; H), E)) to V p

θ (Ω; γ(L2(0, T ), F )) with Lipschitz

constant 6 Lipγ(B).

Proof. For t ∈ (0, T ) let µt,θ be the finite Borel measure on (0, t) defined by

µt,θ(A) =

∫

A

(t − s)−2θ ds, A ∈ B(0, t).

The result follows from Proposition 14.1 and the observation that for an H-
strongly measurable function Ψ : (0, T ) → L (H, E) the following assertions
are equivalent:

(1) s 7→ (t − s)−θΨ(s) defines an element of γ(L2(0, t; H), E);
(2) s 7→ Ψ(s) defines an element of γ(L2((0, t), µt,θ; H), E).

This equivalence is a consequence of the fact that the functions h1, . . . , hn

are orthonormal in L2((0, t), µt,θ; H) if and only if the functions s 7→ (t −
s)−θh1(s), . . . , s 7→ (t − s)−θhn(s) are orthonormal in L2(0, t; H). ⊓⊔

14.4 Existence and uniqueness

After these preparations we are ready to prove existence and uniqueness of
solutions for the problem (SCP).

We fix an initial value u0 ∈ Lp(Ω, F0; E) and consider the fixed point map
LT , initially defined for step functions φ : (0, T ) → E by

LT (φ) := Su0 + S ⋄ B(φ),

where for brevity we write (Su0)(t) := S(t)u0.
The next result formulates a set of conditions ensuring that LT be well-

defined on V p
θ (Ω; γ(L2(0, T ), E)).

Proposition 14.11. Let E be a UMD space with Pisier’s property and let

1 < p < ∞. Let A be the generator of a C0-semigroup S on E such that

{tθS(t) : t ∈ (0, T )} is γ-bounded for some 0 6 θ < 1
2 , and let B : E →

γ(H, E) be γ-Lipschitz continuous. Then the mapping LT is well-defined and

Lipschitz continuous on V p
θ (Ω; γ(L2(0, T ), E)) and there exists a constant C >

0, independent of T and u0, such that:

(1) for all φ ∈ V p
θ (Ω; γ(L2(0, T ), E)),

‖LT (φ)‖V
p

θ
(Ω;γ(L2(0,T ),E)) 6 CT

1
2
−θ

(
T 1−2θ+‖u0‖p+‖φ‖V

p

θ
(Ω;γ(L2(0,T ),E))

)
;
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(2) for all φ1, φ2 ∈ V p
θ (Ω; γ(L2(0, T ), E)),

‖LT (φ1) − LT (φ2)‖V
p

θ
(Ω;γ(L2(0,T ),E)) 6 CT

1
2
−θ‖φ1 − φ2‖V

p

θ
(Ω;γ(L2(0,T ),E)).

Proof. We begin by estimating the initial value part. By Lemma 10.17 and
Theorem 9.14, for all t ∈ (0, T ] the following estimate holds for almost all
ω ∈ Ω:

‖s 7→ (t − s)−θS(s)u0(ω)‖γ(L2(0,t),E)

. tθ‖s 7→ s−θ(t − s)−θu0(ω)‖γ(L2(0,t),E)

= t
1
2
−θ‖s 7→ s−θ(t − s)−θ‖L2(0,t)‖u0(ω)‖

h t
1
2
−θ‖u0(ω)‖,

with a constant independent of u0 and t ∈ (0, T ). In the third line, the equality
follows Exercise 5.3. Hence,

‖Su0‖V
p

θ
(Ω;γ(L2(0,T ),E))

= sup
t∈(0,T ]

‖s 7→ (t − s)−θS(s)u0‖Lp(Ω;γ(L2(0,t;H),E)) . T
1
2
−θ‖u0‖p.

(14.2)

Fix adapted step processes φ1, φ2 : (0, T ) × Ω → E. If B is γ-Lipschitz,
Propositions 14.9 and 14.10 show that B(φk) ∈ V p

θ (Ω; γ(L2(0, T ; H), E)),
S ⋄ B(φk) ∈ V p

θ (Ω; γ(L2(0, T ), E)), k = 1, 2, and

‖S ⋄ B(φ1) − S ⋄ B(φ2))‖V
p

θ
(Ω;γ(L2(0,T ),E))

6 CT
1
2
−θ‖B(φ1) − B(φ2)‖V

p

θ
(Ω;γ(L2(0,T ;H),E))

6 CT
1
2
−θLipγ(B)‖φ1 − φ2‖V

p

θ
(Ω;γ(L2(0,T ),E)).

It follows from these estimates that LT has a unique extension to a Lipschitz
continuous mapping on V p

θ (Ω; γ(L2(0, T ), E)) which satisfies the estimate of
(2). The estimate (1) follows from the identity LT (φ) = LT (0) + (LT (φ) −
LT (0)) and (2), using that from (14.2) and Proposition 14.9 we obtain

‖LT (0)‖V
p

θ
(Ω;γ(L2(0,T ),E))

. T
1
2
−θ

(
‖u0‖p + ‖1(0,T ) ⊗ B(0)‖V

p

θ
(Ω;γ(L2(0,T ),E))

)

6 T
1
2
−θ

(
‖u0‖p + T 1−2θ‖B(0)‖γ(H,E)

)
. ⊓⊔

After these preparations we are ready to formulate our main result for ex-
istence and uniqueness of mild solutions for the stochastic evolution equation
(SCP). We denote by S the C0-semigroup generated by A.

Definition 14.12. Let θ > 0 and 1 6 p < ∞. A strongly measurable and

adapted process U : [0, T ]×Ω → E is called a mild V p
θ -solution of the problem

(SCP) if it belongs to V p
θ (Ω; γ(L2(0, T ), E)) and for all t ∈ [0, T ] the following

identity holds almost surely:
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U(t) = S(t)u0 + (S ⋄ B(U))(t).

A mild V p
0 -solution is called a mild Lp-solution.

This definition is motivated by the formula U(t) = S(t)u0 + (S ⋄B)(t) for
the unique weak solution of the problem dU(t) = AU(t) dt + B dWH(t) which
was studied in Lectures 8–10 (and corresponds to the special case B(x) ≡ B).

Theorem 14.13 (Existence and uniqueness). Let E be a UMD space with

Pisier’s property and let 1 < p < ∞. Suppose that A is the generator of

a C0-semigroup S on E such that {tθS(t) : t ∈ [0, T ]} is γ-bounded for

some 0 6 θ < 1
2 , let B : E → γ(H, E) be γ-Lipschitz continuous, and let

u0 ∈ Lp(Ω, F0; E). Then there exists a unique mild V p
θ -solution U of (SCP).

Moreover, there exists a constant CT > 0, independent of u0, such that

‖U‖V
p

θ
(Ω;γ(L2(0,T ;H),E)) 6 CT (1 + ‖u0‖p).

Here, uniqueness is understood in the sense of V p
θ (Ω; γ(L2(0, T ), E)). By

strong measurability, any two solutions representing the same element in this
space are versions of each other.

Proof. By Proposition 14.11 we can find 0 < T0 6 T , independent of u0, such
that

‖LT0
(φ1)−LT0

(φ2)‖V
p

θ
(Ω;γ(L2(0,T0),E)) 6

1

2
‖φ1−φ2‖V

p

θ
(Ω;γ(L2(0,T0),E)) (14.3)

for all φ1, φ2 ∈ V p
θ (Ω; γ(L2(0, T0), E)) and

‖LT0
(φ)‖V

p

θ
(Ω;γ(L2(0,T0),E)) 6

1

2

(
1 + ‖u0‖p + ‖φ‖V

p

θ
(Ω;γ(L2(0,T0),E))

)
(14.4)

for φ ∈ V p
θ (Ω; γ(L2(0, T0), E)). By (14.3) and the Banach fixed point theorem,

LT0
has a unique fixed point Ũ ∈ V p

θ (Ω; γ(L2(0, T0), E)). Define the strongly
measurable adapted process U : [0, T0] × Ω → E by

U(t) := S(t)u0 + (S ⋄ B(Ũ))(t).

Then U is a mild V p
θ -solution, and clearly we have U = Ũ as elements of

V p
θ (Ω; γ(L2(0, T0), E)). Uniqueness in V p

θ (Ω; γ(L2(0, T0), E)) follows from the

uniqueness of the fixed point in that space. Noting that Ũ = LT0
(Ũ), the

estimate (14.4) implies the final estimate on the interval [0, T0].
Via a standard induction argument we now construct a mild solution on

each of the intervals [T0, 2T0], . . . , [(n − 1)T0, nT0], [nT0, T ], where n is an ap-
propriate integer. This results in a mild solution U on [0, T ] of (SCP) with
the properties as stated in the theorem. Uniqueness on [0, T ] follows by induc-
tion from the uniqueness on each of the subintervals. We leave the somewhat
tedious details as an exercise (see Exercise 5). ⊓⊔
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Let us have a closer look at this theorem for the special case where E is
a Hilbert space. Then E is a UMD space with Pisier’s property, the family
{S(t) : t ∈ [0, T ]} is γ-bounded (since in Hilbert spaces, uniformly bounded
families are γ-bounded), and every Lipschitz continuous function B : E →
γ(H, E) = L2(H, E) is γ-Lipschitz continuous (since Hilbert spaces have type
2, cf. Example 14.3); recall that L2(H, E) denotes the space of all Hilbert-
Schmidt operators from H to E.

Corollary 14.14 (Hilbert space case). Let E be a Hilbert space and let

1 < p < ∞. Suppose that A is the generator of a C0-semigroup on E, let

B : E → L2(H, E) be Lipschitz continuous, and let u0 ∈ Lp(Ω, F0; E). Then

there exists a unique mild Lp-solution of (SCP). Moreover, there exists a

constant CT > 0, independent of u0, such that

‖U‖Lp(Ω;γ(L2(0,T ),E)) 6 CT (1 + ‖u0‖p).

14.5 Space-time regularity

To motivate our approach we return to the proof Theorem 10.19, where space-
time Hölder regularity of solutions was proved under the assumption that the
semigroup S generated by A is analytic. The crucial ingredient was the γ-
boundedness of the family {tθS(t) : t ∈ (0, T )} in L (E, Eα) for 0 6 α < θ <
1
2 . Recall that the spaces Eα have been defined in Lecture 10 as the fractional
domain spaces D((w − A)α).

As the next proposition shows, for processes in V p
θ (Ω; γ(L2(0, T ), E)) the

proof of Theorem 10.19 can be repeated.

Proposition 14.15. Let A be the generator of an analytic C0-semigroup S
on a UMD space E. Suppose that 2 < p < ∞ and 1

p
< θ < 1

2 and let α > 0

and β > 0 satisfy 0 6 α + β < θ − 1
p
. If Φ ∈ V p

θ (Ω; γ(L2(0, t; H), E)), then

S ⋄ Φ has a version with trajectories in Cβ([0, T ]; Eα) and

‖S ⋄ Φ‖Lp(Ω;Cβ([0,T ];Eα)) 6 CT ‖Φ‖V
p

θ
(Ω;γ(L2(0,t;H),E)),

where the constant CT > 0 is independent of Φ.

Proof. First note that the γ-boundedness of {tθS(t) : t ∈ (0, T )} in L (E, Eα)
implies that (S ⋄ Φ)(t) ∈ Lp(Ω; Eα) for all t ∈ [0, T ]. Fix 0 < s < t 6 T and
write

(E‖S ⋄ Φ(t) − S ⋄ Φ(s)‖p
Eα

)
1
p 6 R1 + R2,

where

R1 =
(

E

∥∥∥
∫ s

0

S(t − r) − S(s − r)Φ(r) dWH (r)
∥∥∥

p

Eα

) 1
p

,

R2 =
(

E

∥∥∥
∫ t

s

S(t − r)Φ(r) dWH (r)
∥∥∥

p

Eα

) 1
p

.
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Let β′ > β satisfy α + β′ < θ − 1
p

and put δ := β′ + 1
p
. Then α + δ < θ and

β < δ− 1
p
. By Lemma 10.17, and Theorems 9.14 and 13.7, for large w we have

Rp
1 . E‖r 7→ S(s − r)(S(t − s) − I)Φ(r)‖p

γ(L2(0,s;H),Eα)

h E‖r 7→ S(s − r)(S(t − s) − I)(w − A)−δΦ(r)‖p

γ(L2(0,s;H),Eα+δ)

. T (θ−α−δ)p
E‖r 7→ (s−r)−θ(S(t−s) − I)(w − A)−δΦ(r)‖p

γ(L2(0,s;H),E)

. T (θ−α−δ)p(t − s)δp
E‖r 7→ (s − r)−θΦ(r)‖p

γ(L2(0,s;H),E)

. T (θ−α−δ)p(t − s)δp‖Φ‖p

V
p

θ
(Ω;γ(L2(0,T ;H),E))

.

In the second last estimate we used that ‖(S(t− s)− I)(w −A)−δ‖ . |t− s|δ
by the analyticity of S (see Lemma 10.15). Similarly,

Rp
2 . E‖r 7→ S(t − r)Φ(r)‖p

γ(L2(s,t;H),Eα)

. T (θ−δ−α)p
E‖r 7→ (t − r)−θ+δΦ(r)‖p

γ(L2(s,t;H),E)

. T (θ−δ−α)p(t − s)δp
E‖r 7→ (t − r)−θΦ(r)‖p

γ(L2(s,t;H),E)

. T (θ−δ−α)p(t − s)δp‖Φ‖p

V
p

θ
(Ω;γ(L2(0,T ;H),E))

,

where the second last inequality follows by covariance domination. Combining
these estimates with Kolmogorov’s theorem (Theorem 6.9) and using that
β < (δp − 1)/p = δ − 1

p
, we obtain a version of S ⋄ Φ which is β-Hölder

continuous in Eα. ⊓⊔

We are now ready to formulate our main regularity result for the mild
solutions of problem (SCP).

Theorem 14.16 (Hölder Regularity). Let A be the generator of an ana-

lytic C0-semigroup S on a UMD space E with Pisier’s property. Suppose that

B : E → L (H, E) is γ-Lipschitz continuous and let u0 ∈ Lp(Ω, F0; E). For

all α, β, θ > 0 satisfying α + β < θ < 1
2 and all 1 < p < ∞, the unique mild

V p
θ -solution U of the problem (SCP) has a version for which U − Su0 has

trajectories in Cβ([0, T ]; Eα).

Note that if u0 is sufficiently regular, this result implies that U itself has
a version with trajectories in Cβ([0, T ]; Eα).

Proof. The existence of a unique mild V p
θ -solution follows from Theorem

14.13; the γ-boundedness assumption holds by the analyticity of S.
If U is a mild V p

θ -solution and Ũ is mild V q
θ -solution, where 1 < p 6 q < ∞,

then Ũ is also a mild V p
θ -solution. Hence by uniqueness, U and Ũ are equal

as elements of V p
θ (Ω; γ(L2(0, T ), E)), and by strong measurability U and Ũ

are versions of each other. Therefore it suffices to consider the case where
2 < p < ∞ satisfies α + β < θ − 1

p
< 1

2 − 1
p
.
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By Proposition 14.9, S ⋄B(U) belongs to V p
θ (Ω; γ(L2(0, t; H), Eα)), where

U is the mild V p
θ -solution U of (SCP). Hence, by Proposition 14.15, U−Su0 =

S ⋄ B(U) has a version with trajectories in Cβ([0, T ]; Eα) and

E‖S ⋄ B(U)‖p

Cβ([0,T ];Eα)
6 Cp‖B(U)‖p

V
p

θ
(Ω;γ(L2(0,T ;H),E))

6 Cp(1 + ‖U‖V
p

θ
(Ω;γ(L2(0,T ),E)))

p 6 Cp(1 + ‖u0‖p)
p,

where the last of these estimates follows from Theorem 14.13. ⊓⊔

14.6 Exercises

1. Provide the details of the central limit argument in Proposition 14.7.

2. Show that if E is a Banach space with the property that the mapping

n∑

j,k=1

1Aj
(1Bk

⊗ xjk) 7→
n∑

j,k=1

(1Aj
1Bk

) ⊗ xjk

(with notations as in Proposition 14.7) induces an isomorphism

γ(L2(0, T ), γ(L2(0, T ), E)) ≃ γ(L2((0, T )2), E),

then E has Pisier’s property (in the formulation using Gaussian random
variables; as has been noted without proof, this formulation is equivalent
to the one with Rademachers given in the text). This gives a converse to
Proposition 14.7.

3. Let H be a Hilbert space, E and F Banach spaces, and assume that E has
cotype 2 and F has type 2. Show that every Lipschitz continuous function
B : E → γ(H, F ) is γ-Lipschitz continuous with

Lip(B) 6 Lipγ(B) 6 C2(E)T2(F )Lip(B),

where C2(E) and T2(F ) denote the Gaussian cotype 2 constant of E and
the type 2 constant of F , respectively.
Hint: Use the results of Exercise 5.4.

4. Frequently, uniqueness proofs are based on Gronwall’s inequality. The
purpose of this exercise is to show that the ‘γ-Gronwall inequality’ fails
in spaces without type 2.
a) Show that if E is a Banach space without type 2, then there exist step

functions φn : ( 1
n+1 , 1

n
) → E such that

‖φn‖L∞( 1
n+1

, 1
n

;E) 6 1, inf
n>1

‖φn‖γ(L2( 1
n+1

, 1
n

),E) > 0.

b) Prove that the following assertions are equivalent:
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(i) the space E has type 2;
(ii) whenever φ : (0, 1) → E is a strongly measurable function rep-

resenting an element of γ(L2(0, 1), E) and there exists a constant
C = Cφ > 0 such that

‖φ(t)‖ 6 C‖φ‖γ(L2(0,t),E) for almost all t ∈ (0, 1),

we have φ = 0 almost everywhere on (0, 1).
Hint: In one direction, consider the function φ(t) := 1

n2 φn(t) for
t ∈ (tn+1, tn], where φn is as in a). In the other direction, use
Gronwall’s inequality.

5. Provide the details of the induction argument that was used at the end of
the proof of Theorem 14.13.

Notes. The material of Section 14.1 and 14.3 is based on the paper [83].
Exercise 3 is a variation on a result of that paper. In [80], the following converse
is proved: if every Lipschitz function B : E → F is γ-Lipschitz, then E has
cotype 2 and F has type 2.

Pisier’s property was introduced, under the name ‘property (α)’, by Pisier

[92] who proved that a Banach lattice has this property if and only if it has
finite cotype. Proposition 14.4 and the equivalence with its Gaussian formu-
lation belong to mathematical folklore. It should be noted that the UMD
property and Pisier’s property are unrelated: the Schatten classes Cp have
the UMD property for 1 < p < ∞ but fail Pisier’s property unless p = 2,
whereas L1-spaces have Pisier’s property but fail the UMD property unless
they are finite-dimensional.

Proposition 14.7 is a special case of the more general statement that if H1

and H2 are Hilbert spaces and E is a Banach space with Pisier’s property,
then

γ(H1, γ(H2, E)) ≃ γ(H1⊗̂H2, E)

isomorphically, where H1⊗̂H2 is the Hilbert space tensor product of H1 and
H2. Exercise 2 can be formulated similarly. Both results are due to Kalton

and Weis [58].
The use of Pisier’s property can be avoided in Lemma 14.8 and all results

depending on it, but it would take a full lecture to explain all the details.
The interested reader is referred to [83]. Previous results along these lines
for Hilbert spaces can be found in Da Prato and Zabczyk [27]; they were
extended to martingale type 2 spaces by Brzeźniak [14]. In this context it
should be noted that if S is a C0-contraction semigroup on a Hilbert space
E, then by a result of Kotelenez [60] and Tubaro [104] the convolution
process

t 7→
∫ t

0

S(t − s)Φ(s) dWH (s)

has a continuous version for all adapted and H-strongly measurable Φ :
(0, T ) × Ω → L2(H, E); see also Da Prato and Zabczyk [27, Theorem
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6.10]. As a result, in this situation the solution of Theorem 14.14 has a con-
tinuous version.

The results of Sections 14.4 and 14.5 are based on the paper [83]. The
main results, Theorem 14.13 and 14.16, are variations of results in that paper
and can be extended to semilinear parabolic equations with time-dependent
coefficients of the form

{
dU(t) = (AU(t) + F (t, U(t))) dt + B(t, U(t)) dWH(t),

U(0) = u0.

Sufficient conditions for a mild solution to be a weak solution (which is
defined in analogy to Lecture 8) and vice versa are given by Da Prato and
Zabczyk [27] and Veraar [106].


