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Applications to stochastic PDE

In this final lecture we present some applications of the theory developed in
this course to stochastic partial differential equations. We concentrate on two
specific examples: the wave equation and the heat equation.

15.1 Space-time white noise

It has been mentioned already in Lecture 6 that for H = L2(D), where D
is a domain in R

d, H-cylindrical Brownian motions can be used to model
space-time white noise on D. We begin by making this idea more precise.

Definition 15.1. Let (A, A , µ) be a σ-finite measure space and denote by A0

the collection of all B ∈ A such that µ(B) < ∞. Let (Ω, F , P) be a probability
space. A white noise on (A, A , µ) is a mapping w : A0 → L2(Ω) such that:

(i) each w(B) is centred Gaussian with

E(w(B))2 = µ(B);

(ii) if B1 ∩ · ∩ BN = ∅, then w(B1), . . . , w(BN ) are independent and

w
(

N
⋃

n=1

Bn

)

=

N
∑

n=1

w(Bn).

It follows from the general theory of Gaussian processes that such mappings
always exist. We shall not go into the details of this, since in all applications
the white noise is assumed to be given.

Definition 15.2. A white noise w on [0, T ]×D, where D is a domain in R
d,

will be called a space-time white noise on D.
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Canonically associated with such w is an L2(D)-cylindrical Brownian motion
W , defined by

W (t)1B := w([0, t] × B), B ∈ B0(D);

this definition is extended to simple functions by linearity. To see that
W is indeed an L2(D)-cylindrical Brownian motion note that for disjoint
B1, . . . , BN ∈ B0(D) and real numbers c1, . . . , cN we have, by (i) and (ii),

E

(

W (t)

N
∑

n=1

cn1Bn

)2

=

N
∑

n=1

c2
nE(w([0, t] × Bn))2

=
N

∑

n=1

c2
nt|Bn| = t

∥

∥

∥

N
∑

n=1

cn1Bn

∥

∥

∥

2

L2(D)
.

15.2 The stochastic wave equation

In this section we study the stochastic wave equation with Dirichlet boundary
conditions, driven by multiplicative space-time white noise:



































∂2u

∂t2
(t, ξ) = ∆u(t, ξ) + B

(

u(t, ξ),
∂u

∂t
(t, ξ)

)∂w

∂t
(t, ξ), ξ ∈ D, t ∈ [0, T ],

u(t, ξ) = 0, ξ ∈ ∂D, t ∈ [0, T ],

u(0, ξ) = u0(ξ), ξ ∈ D,

∂u

∂t
(0, ξ) = v0(ξ), ξ ∈ D.

(WE)
Here w is a space-time white noise on a bounded domain D in R

d with smooth
boundary ∂D.

In order to keep the technicalities at a minimum we discuss two special
cases in detail: the case where the operator-valued function B is of rank one,
which is equivalent to the formulation (WE1) below, and the case where D is
the unit interval in R and B = I.

15.2.1 Rank one multiplicative noise

We begin with the following special case of (WE):


































∂2u

∂t2
(t, ξ) = ∆u(t, ξ) + b

(

u(t, ξ),
∂u

∂t
(t, ξ)

)∂W

∂t
(t, ξ), ξ ∈ D, t ∈ [0, T ],

u(t, ξ) = 0, ξ ∈ ∂D, t ∈ [0, T ],

u(0, ξ) = u0(ξ), ξ ∈ D,

∂u

∂t
(0, ξ) = v0(ξ), ξ ∈ D,

(WE1)
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where W is a standard Brownian motion. We assume that the diffusion term
b : R × R → R satisfies the growth condition

|b(ξ1, ξ2)|2 6 C2
1 (|ξ1|2 + |ξ2|2)

and the Lipschitz condition

|b(ξ1, ξ2) − b(η1, η2)|2 6 C2
2 (|ξ1 − η1|2 + |ξ2 − η2|2).

The initial values u0 and v0 are taken in W 1,2(D) and L2(D), respectively.
Writing the first equation as a system of two first order equations,











∂u

∂t
(t, ξ) = v(t, ξ),

∂v

∂t
(t, ξ) = ∆u(t, ξ) + b(u(t, ξ), v(t, ξ))

∂W

∂t
(t, ξ),

ξ ∈ D, t ∈ [0, T ],

(15.1)
we reformulate the problem (WE) as a first order stochastic evolution equa-
tion as follows. Let ∆ denote the Dirichlet Laplacian on L2(D) with domain
D(∆) = W 2,2(D) ∩ W 1,2

0 (D); see Examples 7.21. On the Hilbert space

H := D((−∆)1/2) × L2(D) = W 1,2(D) × L2(D)

we define the operator

A :=

[

0 I
∆ 0

]

with domain D(A) := D(∆)×D((−∆)1/2) = (W 2,2(D)∩W 1,2
0 (D))×W 1,2(D).

As in Example 7.22, this operator is the generator of a bounded C0-group on
H , and we may reformulate the problem (15.1) as an abstract stochastic
evolution equation of the form

{

dU(t) = AU(t) dt + B(U(t)) dW (t),

U(0) = U0,
(15.2)

where W is a Brownian motion and the function B : H → H is the Nemytskii
map associated with b,

B

[

f
g

]

:=

[

0
b(f, g)

]

,

[

f
g

]

∈ H ,

and U0 :=

[

u0

v0

]

∈ H .

Proposition 15.3. Under the above assumptions on b, the Nemytskii map
B : H → H is well defined, Lipschitz continuous with Lip(B) 6 Lip(b), and
of linear growth.
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Proof. For all (f, g) ∈ H we have

‖B(f, g)‖2
H =

∫

D

|b(f(ξ), g(ξ))|2 dξ

.

∫

D

|f(ξ)|2 + |g(ξ)|2 dξ . ‖f‖2
2 + ‖g‖2

2 6 ‖(f, g)‖2
H .

A similar estimate gives that B is Lipschitz continuous from H to H with
Lip(B) 6 Lip(b). ⊓⊔

We say that a measurable adapted process u : [0, T ] × Ω × D → R is a

mild Lp-solution of (WE) if U(t, ω) :=

[

u(t, ω, ·)
∂u
∂t u(t, ω, ·)

]

belongs to H for all

(t, ω) ∈ [0, T ] × Ω and the resulting process U : [0, T ] × Ω → H is a mild
Lp-solution of the problem (15.2).

Theorem 15.4. Under the above assumptions, for all 1 < p < ∞ the problem
(WE) admits a unique mild Lp-solution.

Here, uniqueness is understood in the sense of Lp(Ω; γ(L2(0, T ), H )).

Proof. By Proposition 15.3, the Nemytskii operator B associated with b is
Lipschitz continuous. Moreover, as we have seen in Example 7.22, the operator
A is the generator of a C0-group on H . We have thus checked all assumptions
of Corollary 14.14 (with H = R and E = H ) and conclude that for all
1 < p < ∞ the problem (WE) admits a unique mild Lp-solution. ⊓⊔

15.2.2 Additive space-time white noise

Our next example concerns the stochastic wave equation with additive space-
time white noise on the unit interval (0, 1) in R:



































∂2u

∂t2
(t, ξ) = ∆u(t, ξ) +

∂w

∂t
(t, ξ), ξ ∈ (0, 1), t ∈ [0, T ],

u(t, 0) = u(t, 1) = 0, t ∈ [0, T ],

u(0, ξ) = u0(ξ), ξ ∈ (0, 1),

∂u

∂t
(0, ξ) = v0(ξ), ξ ∈ (0, 1).

(WE2)

Here w is a space-time white noise on (0, 1). We model this problem as an
abstract stochastic evolution equation on the Hilbert space H = W 1,2(0, 1)×
L2(0, 1) as











dU(t) = AU(t) dt + d

[

0
WL2(t)

]

,

U(0) = U0,

(15.3)
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where as before A =

[

0 I
∆ 0

]

, with ∆ the Dirichlet Laplacian on L2(0, 1), and

WL2 is the L2(0, 1)-cylindrical Brownian motion canonically associated with
w; see Section 15.1.

To analyse the problem (15.3) we use the functional calculus for self-adjoint
operators. Using this calculus it can be checked that the C0-group S generated
by A is of the form

S(t) =

[

cos(t(−∆)1/2) (−∆)−1/2 sin(t(−∆)1/2)

−(−∆)1/2 sin(t(−∆)1/2) cos(t(−∆)1/2)

]

.

By Theorem (8.6), the unique weak solution U of (15.3) is given by

U(t) =

∫ t

0

S(t− s) d

[

0
W (s)

]

=

∫ t

0

[

(−∆)−1/2 sin((t − s)(−∆)1/2)

cos((t − s)(−∆)1/2)

]

dWL2(s),

(15.4)
provided both integrands are stochastically integrable with respect to WL2 .
Noting that the trigonometric functions hn(ξ) :=

√
2 sin(nπξ), n > 1, form an

orthonormal basis of eigenfunctions for ∆, by using Theorems 5.19 and 6.17
this is the case if and only if the following two conditions are satisfied:

∫ T

0

∞
∑

n=1

[sin2(t(−∆)1/2)hn, hn] dt < ∞,

∫ T

0

∞
∑

n=1

[cos2(t(−∆)1/2)hn, hn] dt < ∞.

(15.5)

But if these conditions hold, then by adding we obtain
∫ T

0

∑

∞

n=1[hn, hn] dt <
∞, which is obviously false. We conclude that the problem (15.3) fails to have
a weak solution in H .

Instead of looking for a solution in H , we could try to look for a solution
in the larger space

G := L2(0, 1) × W−1,2(0, 1),

where W−1,2(0, 1) denotes the completion of L2(0, 1) with respect to the norm
‖f‖W−1,2(0,1) := ‖(−∆)−1/2f‖. This definition of W−1,2(0, 1) is motivated by

the fact that W 1,2(0, 1) can be characterised as the domain of (−∆)1/2. The
space G is the so-called extrapolation space of H with respect to (−∆)1/2; we
refer to Exercise 5 for a more systematic discussion.

As is easy to check, the semigroup S extends to a C0-semigroup on G , and
the stochastic convolution (15.4) is well defined in G if and only if

∫ T

0

∞
∑

n=1

[(−∆)−1 sin2(t(−∆)1/2)hn, hn] dt < ∞,

∫ T

0

∞
∑

n=1

[(−∆)−1 cos2(t(−∆)1/2)hn, hn] dt < ∞.

(15.6)
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These conditions are indeed satified, as is clear from the identity (−∆)−1hn =
(nπ)−2hn.

Let us call a measurable adapted process u : [0, T ] × Ω × (0, 1) → R an

extrapolated weak solution of (WE2) if U(t, ω) :=

[

u(t, ω, ·)
∂u
∂t u(t, ω, ·)

]

belongs to G

for all (t, ω) ∈ [0, T ] × Ω and the resulting process U : [0, T ] × Ω → G is a
weak solution of the problem (WE2). Summarising the above discussion, we
have proved:

Theorem 15.5. The stochastic wave equation (WE2) admits a unique ex-
trapolated weak solution.

Here, uniqueness is understood in the sense of γ(L2(0, T ; L2(0, 1)), G ).

15.3 The stochastic heat equation

Next we consider two stochastic heat equations with Dirichlet boundary val-
ues, driven by multiplicative space-time white noise on a domain D in R

d:















∂u

∂t
(t, ξ) = ∆u(t, ξ) + B(u(t, ξ))

∂w

∂t
(t, ξ), ξ ∈ D, t ∈ [0, T ],

u(t, ξ) = 0, ξ ∈ ∂D, t ∈ [0, T ],

u(0, ξ) = u0(ξ), ξ ∈ D,

Again we discuss two particular cases of this problem: multiplicative rank
one noise and additive space-time white noise. In both cases, the proofs of
the main results can only be sketched, as they depend on a fair amount of
interpolation theory and results from the theory of PDE. We refer to the Notes
for references on this material.

15.3.1 Rank one multiplicative noise

Let D be a bounded domain in R
d with smooth boundary ∂D. Our first

example concerns the following stochastic heat equation driven by a rank one
multiplicative noise:















∂u

∂t
(t, ξ) = ∆u(t, ξ) + b(u(t, ξ))

∂W

∂t
(t), ξ ∈ D, t ∈ [0, T ],

u(t, ξ) = 0, ξ ∈ ∂D, t ∈ [0, T ],

u(0, ξ) = u0(ξ), ξ ∈ D.

(HE1)

Here W is standard real-valued Brownian motion. We assume that the func-
tion b : R → R is Lipschitz continuous.

We fix 1 < p < ∞ and assume that the initial value u0 belongs to Lp(D).
We say that a measurable adapted process u : [0, T ]×Ω×D → R is a mild V p

θ -
solution of (HE1) if ξ 7→ u(t, ω, ξ) belongs to Lp(D) for all (t, ω) ∈ [0, T ]× Ω
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and the resulting process U : [0, T ]×Ω → Lp(D) is a mild V p
θ -solution of the

stochastic evolution equation

{

dU(t) = AU(t) dt + B(U(t)) dW (t),

U(0) = u0.
(15.7)

Here A is the Dirichlet Laplacian on Lp(D) and B : Lp(D) → Lp(D) is the
Nemytskii map associated with b,

(B(u))(ξ) := b(u(ξ)).

Proposition 15.6. Under the above assumptions on b, the Nemytskii map B :
Lp(D) → Lp(D) is well defined and γ-Lipschitz continuous with Lipγ(B) 6
CpLip(b), where Cp is a constant depending only on p.

Proof. Let us first note that B(f) ∈ Lp(D) for all f ∈ Lp(D), so B is well
defined.

It follows from the Kahane-Khintchine inequality that for all f1, . . . , fN

and g1, . . . , gN in Lp(D),

(

E

∥

∥

∥

N
∑

n=1

γn(B(fn) − B(gn))
∥

∥

∥

2

Lp(D)

)
1

2

hp

(

E

∥

∥

∥

N
∑

n=1

γn(B(fn) − B(gn))
∥

∥

∥

p

Lp(D)

)
1

p

=
(

∫

D

E

∣

∣

∣

N
∑

n=1

γn(b(fn(ξ)) − b(gn(ξ)))
∣

∣

∣

p

dξ
)

1

p

hp

(

∫

D

(

E

∣

∣

∣

N
∑

n=1

γn(b(fn(ξ)) − b(gn(ξ)))
∣

∣

∣

2) p
2

dξ
)

1

p

=
(

∫

D

(

N
∑

n=1

|b(fn(ξ)) − b(gn(ξ))|2
)

p
2

dξ
)

1

p

6 Lip(b)
(

∫

D

(

N
∑

n=1

|fn(ξ) − gn(ξ)|2
)

p
2

dξ
)

1

p

hp Lip(b)
(

E

∥

∥

∥

N
∑

n=1

γn(fn − gn)
∥

∥

∥

2

Lp(D)

)
1

2

,

where the last equivalence is obtained by doing the same computation back-
wards. Now we apply Proposition 14.1 (with H = R). ⊓⊔

Note that this result can be extended to Nemytskii maps on spaces Lp(A),
where (A, A , µ) is any σ-finite measure space.
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Let us say that an adapted process u : [0, T ] × Ω × D → R is a mild
V p

θ -solution of the problem (HE1) if if ξ 7→ u(t, ω, ξ) belongs to V p
θ for all

(t, ω) ∈ [0, T ] × Ω and the resulting process U : [0, T ] × Ω → V p
θ is a mild

V p
θ -solution of the problem (15.7).

Theorem 15.7. Let 1 < p < ∞, α > 0, β > 0, θ > 0 be such that α + 2β +
d/p < 2θ < 1. Then the problem (HE1) has a unique mild V p

θ -solution u.
This solution has a version with the property that u − Su0 has trajectories in
Cβ([0, T ]; Cα(D)), where S denotes the semigroup generated by the Dirichlet
Laplacian on Lp(D).

Proof (Sketch). We check the conditions of Theorem 14.16.
The space E = Lp(D) is UMD and has Pisier’s property and by Proposi-

tion 15.6, B is γ-Lipschitz continuous from E to E.
The Dirichlet Laplacian A generates an analytic C0-semigroup S on E (see

Exercise 3). Choose numbers 0 6 η < η′ < 1
2 such that α + d/p < 2η and

η′ + β < θ. The fractional domain space Eη′ associated with A equals, up to
an equivalent norm, the complex interpolation space [E, D(A)]η′ .

Let W 2η,p(D) be the Sobolev-Slobodetskii space of all functions f : D → R

such that

‖f‖d
W 2η,p(D) := ‖f‖p

Lp(D) +

∫

D

∫

D

|f(ξ) − f(η)|p
|ξ − η|d+2ηp

dξ dη < ∞.

This space equals, up to an equivalent norm, the real interpolation space
(E, D(A))η,p.

By general results in interpolation theory, we have a continuous embedding
[E, D(A)]η′ →֒ (E, D(A))η′,p. By the above identifications, this results in a
continuous embedding Eη′ →֒ W 2η,p(D).

Now we apply Theorem 14.16, which tells us that U − Su0 has a ver-
sion in with trajectories in Cβ([0, T ]; Eη′). By the above, this space embeds
into Cβ([0, T ]; W 2η,p(D)). The proof is finished by an appeal to the Sobolev
embedding theorem, which asserts that for 0 6 α < 2η − d/p we have a con-
tinuous embedding W 2η,p(D) →֒ Cα(D). ⊓⊔

15.3.2 Additive space-time white noise

Our final example is the stochastic heat equation driven by an additive space-
time white noise:















∂u

∂t
(t, ξ) = ∆u(t, ξ) +

∂w

∂t
(t, ξ), ξ ∈ (0, 1), t ∈ [0, T ],

u(t, 0) = u(t, 1) = 0, t ∈ [0, T ],

u(0, ξ) = u0(ξ), ξ ∈ (0, 1).

(HE2)

Here w is a space-time white noise on the unit interval (0, 1).
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We formulate the problem (HE2) as an abstract stochastic evolution equa-
tion in L2(0, 1) of the form

{

dU(t) = AU(t) dt + dWL2(t), t > 0,

U(0) = u0,
(15.8)

where A is the Dirichlet Laplacian on L2 := L2(0, 1) and WL2 is the L2-
cylindrical Brownian motion canonically associated with W . By a computa-
tion similar to (15.9) below (see Exercise 3) it is easy to check that the as-
sumptions of Theorem 8.6 are satisfied, and therefore for initial values u0 ∈ L2

we obtain the existence of a unique weak solution U of (15.8) in L2. Note that
in contrast to the situation for the wave equation, here it is not necessary to
pass to an extrapolation space. The reason behind this is that the regularising
effect of the heat semigroup takes us back into L2; the wave semigroup does
not have any such effect. It is nevertheless useful to consider the equation
in a suitable extrapolation scale, as this enables us to obtain precise Hölder
regularity results.

To this end we shall apply Theorem 10.19 in a suitable extrapolation space
of Lp := Lp(0, 1). Fix δ > 1

4 and let Lp
−δ denote the extrapolation space of

order δ associated with the Dirichlet Laplacian Ap on Lp, that is, Lp
−δ is the

completion of Lp with respect to the norm ‖x‖−δ := ‖(−Ap)
−δx‖. Since Ap

is invertible on Lp (see Exercise 4), (−Ap)
δ acts as an isomorphism from Lp

onto Lp
−δ. We will show next that the identity operator I on L2 extends to a

bounded embedding from L2 into Lp
−δ which is γ-radonifying. Then, we will

exploit the regularising effect of the semigroup S to get back into a suitable
Sobolev space contained in Lp and use this to deduce regularity properties of
the solution.

As is well known,

H1 := D(A) = W 2,2(0, 1) ∩ W 1,2
0 (0, 1)

and
E1 := D(Ap) = W 2,p(0, 1) ∩ W 1,p

0 (0, 1)

with equivalent norms.
The functions hn(ξ) :=

√
2 sin(nπξ), n > 1, form an orthonormal basis

in L2 of eigenfunctions for A with eigenvalues −λn, where λn = (nπ)2. If we
endow H1 with the equivalent Hilbert norm ‖f‖H1

:= ‖Af‖2, the functions
λ−1

n hn form an orthonormal basis for H1 and we have

E

∥

∥

∥

N
∑

n=M

γnλ−1
n hn

∥

∥

∥

2

Lp
1−δ

= E

∥

∥

∥

N
∑

n=M

γnλ−1
n (−Ap)

1−δhn

∥

∥

∥

2

p

= E

∥

∥

∥

N
∑

n=M

γn(nπ)−2δhn

∥

∥

∥

2

p

(∗)

.

N
∑

n=M

(nπ)−4δ,

(15.9)
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where (∗) follows from a square function estimate as in the proof of Proposition
15.6 together with the fact that ‖hn‖p 6

√
2. The right hand side of (15.9)

tends to 0 as M, N → ∞ since we took δ > 1
4 . It follows that the identity

operator on H1 extends to a continuous embedding from H1 into Lp
1−δ which

is γ-radonifying. Denoting this embedding by i−δ, we obtain a commutative
diagram

H
I−δ−−−−→ Lp

−δ

A−1





y

x




Ap

H1
i−δ−−−−→ Lp

1−δ

where the top mapping I−δ : H → Lp
−δ is injective and γ-radonifying by the

ideal property.
We are now in a position to apply Theorem 10.19. As before we assume that

u0 ∈ L2. We say that a measurable adapted process u : [0, T ]×Ω×(0, 1) → R is
a weak solution of (HE2) if ξ 7→ u(t, ω, ξ) belongs to L2 for all (t, ω) ∈ [0, T ]×Ω
and the resulting process U : [0, T ]×Ω → L2 is a weak solution of the problem
(15.8).

Theorem 15.8. The problem (HE2) admits a unique weak solution u. For all
α > 0 and β > 0 satisfying α+2β < 1

2 , the process u−Su0 has a version with
trajectories in Cβ([0, T ]; Cα

0 [0, 1]), where S denotes the semigroup generated
by the Dirichlet Laplacian on L2(0, 1).

Proof (Sketch). Fix arbitrary real numbers α > 0 and β > 0 satisfying α +
2β < 1

2 . Replacing δ by a smaller number if necessary, we can find θ > 0 such
that 1

4 < δ < θ, β+θ < 1
2 , and α+2δ < 2θ. Put η := θ−δ. As is easy to check,

(the extrapolation of) Ap generates an analytic C0-semigroup in Lp
−δ. Hence

we may apply Theorem 10.19 in the space Lp
−δ to obtain a weak solution U

of the problem

{

dU(t) = AU(t) dt + I−δ dWH(t), t ∈ [0, T ],

U(0) = 0,

with paths in the space Cβ
(

[0, T ]; (Lp
−δ)θ

)

= Cβ
(

[0, T ]; Lp
η

)

; the identity
(Lp

−δ)θ = Lp
η is a generalisation of Lemma 10.8. Along the embedding

L2 →֒ Lp
−δ, this solution is consistent with the weak solution U of this problem

in L2.
Noting that α < 2η we choose p so large that α + 1

p < 2η. We have

Lp
η = W 2η,p

0 (0, 1)

with equivalent norms, and by the Sobolev embedding theorem,

W 2η,p(0, 1) →֒ Cα[0, 1]



15.4 Exercises 221

with continuous inclusion. We denote Cα
0 [0, 1] = {f ∈ Cα[0, 1] : f(0) = f(1) =

0}. Putting things together we obtain a continuous inclusion

Lp
η →֒ Cα

0 [0, 1].

In particular it follows that U takes values in Lp. Almost surely, the trajec-
tories of U belong to Cβ([0, T ]; Cα

0 [0, 1]).

If we compare Theorems 15.7 and 15.8 (for d = 1 and D = (0, 1)), we
notice that we get better Hölder regularity for the former (α + 2β < 1 in the
limit p → ∞) than for the latter (α + 2β < 1

2 ). The explanation for this is
the additional δ > 1

4 needed in Theorem 15.8 to get the γ-radonification of
B := I−δ. In Theorem 15.7, γ-radonification came for free.

15.4 Exercises

1. Let (A, A , µ) be a σ-finite measure space and put H := L2(A). Let
(WH(t))t∈[0,T ] be an H-cylindrical Brownian motion. Show that

w([0, t] × B) := WH(t)1B, t ∈ [0, T ], B ∈ A ,

uniquely defines a space-time white noise w on A.

2. Check the computations leading to the conditions (15.5) and (15.6).
Hint: A bounded operator R : H1 → H2, where H1 and H2 are separable
Hilbert spaces, is Hilbert-Schmidt if and only if RR∗ : H2 → H2 has finite
trace.

3. In this exercise we take a look at the following stochastic heat equation
with additive space-time white noise on the domain D = (0, 1)d in R

d.















∂u

∂t
(t, ξ) = ∆u(t, ξ) +

∂W

∂t
(t, ξ), ξ ∈ D, t ∈ [0, T ],

u(t, ξ) = 0, ξ ∈ ∂D, t ∈ [0, T ],

u(0, ξ) = u0(ξ), ξ ∈ D.

We model this problem as a stochastic evolution equation of the form
(15.8).

a) Prove that the Dirichlet Laplacian generates an analytic C0-semigroup
on L2(D).

b) Show that the problem (15.8) has a weak solution in L2(D) if and
only if d = 1.

Hint for a) and b): Find an orthonormal basis of eigenvectors.

4. Show that the heat semigroup generated by the Dirichlet Laplacian on
L2(0, 1) extends to an analytic C0-semigroup on Lp(0, 1), 1 < p < ∞, and
show that its generator is invertible.
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5. In this exercise we take a closer look at extrapolation spaces. Let A be a
densely defined closed operator on a Banach space E and denote by G (A)
its graph,

G (A) = {(x, Ax) ∈ E × E : x ∈ D(A)}.
Define the extrapolation space of E with respect to A as the quotient space

E−1 := (E × E)/G (A).

a) Show that the mapping x 7→ (0, x) defines a bounded dense embedding
E →֒ E−1.

b) Show that A−1 : x 7→ (−x, 0) defined a bounded operator from E to
E−1 which extends A.

c) Show that if λ ∈ ̺(A), then the identity map on E extends to an iso-
morphism of Banach spaces E−1 ≃ Eλ

−1, where the latter is defined as
the completion of E with respect to the norm ‖x‖Eλ

−1

:= ‖R(λ, A)x‖.

Notes. The literature on stochastic partial differential equations is enormous
and various approaches are possible. The functional analytic approach taken
here, where the equation is reformulated as a stochastic evolution equation on
some infinite-dimensional state space, goes back to Hille and Phillips in the
deterministic case and give rise to the theory of C0-semigroups. In the setting
of Hilbert spaces, the theory of stochastic evolution equations was pioneered
by Da Prato and Zabczyk and their schools. We refer to their monograph
[27] for further references. See also Curtain and Pritchard [25] for some
earlier references.

Our definition of a space-time white noise in Section 15.2 follows the lecture
notes of Walsh [107], where also Theorem 15.5 can be found.

The presentation of Section 15.2.2 follows Da Prato and Zabczyk [27,
Example 5.8].

Concerning problem (HE2), the existence of a solution in Cα([0, T ]× [0, 1])
for 0 6 α < 1

4 was proved by Da Prato and Zabczyk by very different
methods; see [27, Theorem 5.20]. Theorem 15.8 was obtained by Brzeźniak

[14] under more general assumptions. The approach taken here is from [34].
The results on interpolation theory needed in the proofs of Theorems 15.8

and 15.7 can be found in the book of Triebel [103].


