CIE4801 Transportation and spatial modelling
Trip generation and networks

Rob van Nes, Transport & Planning
17/4/13
Content

- Trip generation
 - Definitions
 - 3 methods
 - Special issues

- Networks
 - Defining a network
 - Shortest path
1.

Trip generation
Definitions
Introduction to trip generation

- Zonal data
- Trip production / Trip attraction
- Trip distribution
- Modal split
- Period of day
- Assignment
- Travel times, network loads, etc.

- Trip frequency choice
- Destination choice
- Mode choice
- Time choice
- Route choice

- Transport networks
- Travel resistances
What do we want to know?
Ambiguous definitions?

• Definition 1
 • Production: person related
 • Attraction: activity related

• Definition 2
 • Production: departures
 • Attraction: arrivals
Introduction to trip generation
Trips or tours?

- **Trip**

 Origin ➔ Destination ➔ Origin

- **Tour**

 Home ➔ Activity 1 ➔ Activity 2 ➔ Home ➔ Activity
Travel characteristics Netherlands (MON)

- **Trips per person per day**
 - 1978: 3.0 trips/day
 - 1983: 3.2 trips/day
 - 1988: 3.4 trips/day
 - 1993: 3.6 trips/day
 - 1998: 3.8 trips/day
 - 2003: 4.0 trips/day
 - 2008: 4.2 trips/day

- **Distance travelled per person per day**
 - 1978: 25 km/day
 - 1983: 28 km/day
 - 1988: 30 km/day
 - 1993: 32 km/day
 - 1998: 34 km/day
 - 2003: 36 km/day
 - 2008: 38 km/day

- **Time travelled per person per day**
 - 1978: 60 min/day
 - 1983: 62 min/day
 - 1988: 64 min/day
 - 1993: 66 min/day
 - 1998: 68 min/day
 - 2003: 70 min/day
 - 2008: 72 min/day

- **Average speed**
 - 1978: 20 km/hour
 - 1983: 22 km/hour
 - 1988: 24 km/hour
 - 1993: 26 km/hour
 - 1998: 28 km/hour
 - 2003: 30 km/hour
 - 2008: 32 km/hour
Key figures passenger transportation Netherlands (MON)

- Number of trips per person per day: 2.9
- Travel time per person per day: 70 minutes (1 a 1.5 hour)

 Travel time budget!

- Average trip length: 11 km
- 50% of trips is shorter than 3 km
- 1.5% of trips is longer than 100 km
Trip purpose (Netherlands) Trips and tripkilometres

- commuting
- business
- personal care
- shopping
- education
- visiting
- touring
- social/recreation
- other
Dominant definition in this course

Given: A map with zones and zonal data

Determine:
- The number of trips departing at each zone (production)
- The number of trip arriving at each zone (attraction)

<table>
<thead>
<tr>
<th>From:</th>
<th>zone 1</th>
<th>⋮</th>
<th>zone i</th>
<th>⋮</th>
<th>⋮</th>
<th>total attraction</th>
</tr>
</thead>
<tbody>
<tr>
<td>zone 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>⋮</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>zone i</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>⋮</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>⋮</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>⋮</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

To:
Possible factors traveller production

Factors affecting the production:

- income
- car ownership
- household structure
- family size
- value of land
- residential density

Which definition for production is used?
Possible factors traveler attraction

Factors affecting the attraction:
• office space
• retail space (shops)
• employment levels

And which for attraction?
Possible classifications

Trip purpose
• compulsory / mandatory trips
 – working trips
 – education trips
• discretionary / optional trips
 – shopping trips
 – social / recreational trips

Time of day
• peak period
• off-peak period

Person type
• income level
• car ownership
• household size
2.1

Trip generation
Method 1
Regression models

\[Y = \sum_{k} \beta_k X_k \]
(linear regression)

\(Y \) Endogenous (explained) variable
e.g. number of trips produced by a zone or household

\(X_k \) Exogenous (explanatory) variables
e.g. number of inhabitants, household size, education

\(\beta_k \) Parameters

\[Y = 0.91 + 1.44 X_1 + 1.07 X_2 \]
number of trips number of workers number of cars
Regression models

Least squares: minimize \(\sum_i \varepsilon_i^2 = \sum_i \left(Y_i - \hat{Y}_i \right)^2 \)

\[
\hat{Y}_i = \alpha + \beta X_i
\]
Regression models

Linear regression:

\[Y = 0.91 + 1.41X_1 + 1.07X_2 \]

Nonlinearity problem:
The parameter for \(X_2 \) is not constant.

Regression with dummy variables:

\[Y = 0.84 + 1.41X_1 + 0.75D_1 + 3.14D_2 \]

\(D_1 = 1 \) if 1 car, 0 otherwise
\(D_2 = 1 \) if 2 or more cars, 0 otherwise

\(Y = 1.41X_1 + \begin{cases} 0.84 & \text{if } X_2 = 0 \\ 1.59 & \text{if } X_2 = 1 \\ 3.98 & \text{if } X_2 \geq 2 \end{cases} \)
Example for 24-hour model

<table>
<thead>
<tr>
<th>Trip purpose</th>
<th>Regression formula</th>
</tr>
</thead>
<tbody>
<tr>
<td>Work</td>
<td>0.9 * working population + 0.9 * jobs</td>
</tr>
<tr>
<td>Business</td>
<td>0.5 * working population</td>
</tr>
<tr>
<td>Education</td>
<td>0.2 * households + 1.9 * students</td>
</tr>
<tr>
<td>Shopping</td>
<td>1.0 * households + 15.6 * retail jobs</td>
</tr>
<tr>
<td>Other</td>
<td>3.5 * households</td>
</tr>
<tr>
<td>Total</td>
<td>6.5 * households + 2.9 * jobs</td>
</tr>
</tbody>
</table>

Note that in this case it is assumed that production equals attraction.
2.2

Trip generation
Method 2
Cross-classification models

Classify households in homogenous groups
e.g. number of people in household, number of cars, and combinations

[Graph showing trip rate distribution for all households and four distinct groups]
Cross-classification models

Advantages:
- groupings are independent of zone system
- relationships do not need to be linear
- each group can have a different form of relationship

Disadvantages:
- no extrapolation beyond the calibrated groups
- large samples are required (at least 50 obs. per group)
- what is the best grouping?
Cross-classification models

<table>
<thead>
<tr>
<th>household size</th>
<th>0 cars</th>
<th>1 car</th>
<th>≥2 cars</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 person</td>
<td>$n = 20, \mu = 0.2$</td>
<td>$n = 10, \mu = 0.5$</td>
<td>$n = 0, \mu = ?$</td>
</tr>
<tr>
<td>2 persons</td>
<td>$n = 85, \mu = 0.5$</td>
<td>$n = 150, \mu = 0.9$</td>
<td>$n = 20, \mu = 1.5$</td>
</tr>
<tr>
<td>3 persons</td>
<td>$n = 25, \mu = 0.7$</td>
<td>$n = 40, \mu = 1.2$</td>
<td>$n = 30, \mu = 2.0$</td>
</tr>
<tr>
<td></td>
<td>$n = 130, \mu = 0.5$</td>
<td>$n = 200, \mu = 0.9$</td>
<td>$n = 50, \mu = 1.8$</td>
</tr>
</tbody>
</table>
Cross-classification models

Multiple Class Analysis (MCA)

<table>
<thead>
<tr>
<th>household size</th>
<th>0 cars</th>
<th>1 car</th>
<th>≥2 cars</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 person</td>
<td>0.0</td>
<td>0.3</td>
<td>1.2</td>
</tr>
<tr>
<td></td>
<td>0.2</td>
<td>0.5</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 persons</td>
<td>0.4</td>
<td>0.8</td>
<td>1.7</td>
</tr>
<tr>
<td></td>
<td>0.5</td>
<td>0.9</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>≥3 persons</td>
<td>0.9</td>
<td>1.3</td>
<td>2.2</td>
</tr>
<tr>
<td></td>
<td>0.7</td>
<td>1.2</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>−0.4</td>
<td>0.0</td>
<td>+0.9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

$\mu = 0.9$
Cross-classification models

Zone i having 253 households yields

<table>
<thead>
<tr>
<th>Household size</th>
<th>0 cars</th>
<th>1 car</th>
<th>≥ 2 cars</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 person</td>
<td>50</td>
<td>30</td>
<td>1</td>
</tr>
<tr>
<td></td>
<td>0.0</td>
<td>0.3</td>
<td>1.2</td>
</tr>
<tr>
<td>2 persons</td>
<td>25</td>
<td>70</td>
<td>10</td>
</tr>
<tr>
<td></td>
<td>0.4</td>
<td>0.8</td>
<td>1.7</td>
</tr>
<tr>
<td>≥ 3 persons</td>
<td>10</td>
<td>44</td>
<td>13</td>
</tr>
<tr>
<td></td>
<td>0.9</td>
<td>1.3</td>
<td>2.2</td>
</tr>
</tbody>
</table>

Trip production of zone i: 188
2.3

Trip generation
Method 3
Discrete choice models

Binary logit

Alternative 0: do not make a trip \(V_0 = 0 \)
Alternative 1: make one or more trips \(V_1 = \ldots \)

Probability of making at least one trip:

\[
P_{1+} = \frac{\exp(\mu V_1)}{\exp(\mu V_0) + \exp(\mu V_1)} = \frac{1}{1 + \exp(-\mu V_1)}
\]

How many trips on average does a person make?
Discrete choice models

Stop/repeat-model

- Person
 - 0 trips: \(p_0 \)
 - ≥1 trips: \(p_1 \)
 - ≥2 trips: \(p_2 \)
 - ≥3 trips: \(p_3 \)

Possible attributes:
- Household characteristics
- Driving license
- Car ownership
- Gender
- Age
- Education
- Income

\[p_0 + p_1 + p_2 + p_3 = 1 \]

binary logit

etc…
3.

Trip generation
Special issues
Special issues

• What about external zones?

• Modelling all trips or a single mode?

• Segmentation?

• Role of accessibility?

• Does total of departures equal total of attractions?
Which area do you model?

<table>
<thead>
<tr>
<th></th>
<th>Study area</th>
<th>Cordon</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study area</td>
<td>Internal</td>
<td>Out</td>
</tr>
<tr>
<td>Cordon</td>
<td>In</td>
<td>Through</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Study area</th>
<th>Influence area</th>
<th>External area</th>
</tr>
</thead>
<tbody>
<tr>
<td>Study area</td>
<td>Internal</td>
<td>Out</td>
<td>Out</td>
</tr>
<tr>
<td>Influence area</td>
<td>In</td>
<td>Through and....</td>
<td>Through and....</td>
</tr>
<tr>
<td>External area</td>
<td>In</td>
<td>Through and....</td>
<td>Through and....</td>
</tr>
</tbody>
</table>
Swiss model
Segementation by trip purpose
Trips and trip kilometres
Role of accessibility?

- MON: ‘fixed’ trip rate per person per day
- Recent model estimations: small effect for some trip types
- In case of unimodal models?

 Substantial impact, especially for public transport
Does trip production equal trip attraction?

- We have determined the trip production
- We have determined the trip attraction

What to do?

Trip balancing: your choice to decide which of the two is the constraint
4.

Networks
Defining a network
Networks

- zonal data
 - trip production / trip attraction
 - trip frequency choice
 - trip distribution
 - destination choice
 - mode choice
 - time choice
 - route choice
 - modal split
 - period of day
 - time choice
 - assignment
 - route choice
- transport networks
- travel resistances
- travel times
 - network loads
 - etc.
Constructing a transport network

Given a map of the study area, how to represent the infrastructure and the travel demand in a model?
Network attributes

- node
 - x-coordinate
 - y-coordinate
- centroid node
 - zonal data
 - origin/destination
- link
 - node-from
 - node-to
 - length
 - maximum speed
 - number of lanes
 - capacity
Links and junctions

Junction with all turns allowed

Junction with no left turns allowed
Define zones and select roads
Define zones

How do we determine zones?

- base zone definitions on official spatial systems (e.g. municipalities, postal districts)
- try keeping compact convex forms
- more zones needed for modal split than for assignment
Select links

How many zones / nodes / links?

- depends on the application
- rule of thumb:
 include 75% of the network capacity
 (note: 20% of the network accounts for 80% of the travelled kilometers)

modelling

= the art of leaving things out
Which roads should be included?
Urban or regional model?

Regional

Urban
Example car network regional model
Important issues

- Connecting the zones to the network:

- Single connector or multiple connectors?

- Connecting to which type of node/link?

- Choices have major consequences for the assignment to the network!
Public transport network

• Car or bike:
 • Roads defined using links

• PT: Network of services
 • Space accessibility
 • Stops, stations
 • Lines
 • Time accessibility
 • Frequencies
 • Operating hours
 • Defined using access links, transfer links, in-vehicle links, ...
5.

Networks
Shortest path
Shortest Path algorithms

• “Oldies”
 • Moore (1959)
 • Dijkstra (1959)
 • Floyd-Warschall (1962)

• Still a topic for research
Main concept for ‘tree algorithms’
(Moore and Dijkstra)

- For all nodes
 - Set travel time \(tt(x) \) to \(\infty \) and set the back node \(bn(x) \) to 0
- For the origin \(i \) set time to 0 and back node to -1
- Node \(i \) is the first active node \(a \)
- Select all links \((a,j) \) and check travel times
 - If \(tt(a) + \text{time}(a,j) < tt(j) \)
 \(tt(j) = tt(a) + \text{time}(a,j) \) and \(bn(j) = a \) and node \(j \) becomes an active node
 - Node \(a \) is no longer active
- Select a new active node from the stack and repeat previous step until there are no active nodes left

- For Dijkstra: select the link having the lowest travel time and select the active node having the lowest travel time
Main concept for matrix algorithm
(Floyd-Warschall)

- Create two matrices from all nodes to all nodes
 - \(tt(i,j) = t(i,j) \) for all links \((i,j)\) or \(tt(i,j) = \infty \)
 - \(bn(i,j) = i \) for all links \((i,j)\)

- For every node \(k \) check travel times
 - If \(tt(i,k) + tt(k,j) < tt(i,j) \)
 \(tt(i,j) = tt(i,k) + tt(k,j) \) and \(bn(i,j) = bn(k,j) \)

- Repeat previous step until no changes are made
Shortest paths

Contains shortest paths to all nodes from a certain origin
Representation of shortest paths

Shortest route from node 7 to node 5:

node 7 → node 4 → node 1 → node 2 → node 5

or

link 8 → link 3 → link 1 → link 4
Representation of shortest paths

Very compact, less practical:
Back node representation

route “7 → x” (4 1 6 7 2 9 -1 7 8)

Number for elements for storing all shortest routes in the network:
\[N \times N = 9 \times 9 = 81 \]
Representation of shortest paths

Less compact, very practical: Assignment map

Number for elements for storing all shortest routes in the network:

\[A \times N \times (N - 1) = 12 \cdot 9 \cdot 8 = 864 \]