Model verification

L. Andrew Bollinger
6-10-2013

Challenge the future

Lecture goals

e \What is model verification?
e What are the steps for verifying an ABM?

e Verifying your model

'i"U Delft SPM 9555 — Model verification)

What is model verification?

e At this point:

 Your model is coded and (sort of) works
« But can't be sure it's working correctly
e Key question:
e Has the model been implemented correctly?

» Have all the relevant entities and relationships from the conceptual model
been translated into the computational model correctly?

e “Have we built the thing right?” (not “"Have we built the right thing?")
e Building up an evidence file

e Making sure the model generates insights, not artifacts

'i"U Delft SPM 9555 — Model verification 3

The 4 steps for verifying an ABM

Recording and tracking agent behavior
Single-agent testing

Interaction testing in @ minimal model

e

Multi-agent testing

Modified version of the wolf-sheep predation model as an example
« see LectureModelVerification page on the Wiki to download

%
TUDelft SPM 9555 — Model verification 4

http://wiki.tudelft.nl/bin/view/Education/SPM955xABMofCAS/LectureModelVerification

Woli-sheep predation model

gy govemer|

Grass settings

populations
M sheep
B wolves

Carass | 4

1,!U Delft SPM 9555 — Model verification

Step 1: Recording and tracking
agent behavior

 What: Select relevant output variables and set up a way to monitor
their values

e How:
« OPTION 1: Record the inputs, states and outputs of each agent
« OPTION 2: Record the inputs, states or outputs of each /nternal process

« OPTION 3: Walk through the source code using a debugger

'i"U Delft SPM 9555 — Model verification 6

Recording and tracking agent behavior (example)

VERIFICATION TESTS

single-sheep-test

;3 sheep eat grass, turn the patch brown
it poolor = green [
set pocolor brown
Tet previous-energy energy
set energy energy + sheep-gain-from-food :; sheep gain energy by eating
it (log-agent-internals?) [print (word self " just ate some grass. energy was ' previous-gnergy . energy is now ' energy)]

end

to reproduce-sheep ;; sheep procedure
1T random-float 100 < sheep-reproduce [;:; throw "dice” to see if you will reproduce
Tet previous-energy energy

set energy (energy / 2) ;i divide energy between parent and offspring
hatch 1 [rt random-float 360 fd 1] i1 hatch an offspring and mowve 1t forward 1 step
it (log-agent-internals?) [print (word self " had a baby. energy was " previous-energy ". energy 1s now " energy)]
]
end
to reproduce-wolwes ;3 wolf procedure

1T random-float 100 < wolf-reproduce [;: throw "dice” to see if you will reproduce
Tet previous-energy energy

set energy (energy / 2) i3 divide energy between parent and offspring
hatch 1 [rt random-float 360 fd 1] ;3 hatch an offspring and mowve it forward 1 step
it (log-agent-internals?) [print (word self " had a baby. energy was " previous-energy ". energy 1s now " energy)]
]
end

_to catch-sheep ;; wolf procedure

Tet prey one-of sheep-here i3 arab a random sheep

1T prey 1= nobody i3 did we get one? it so,
[Tet sheep-eaten (word prey)

I ask prey [die] i k111 9t I

Recording and tracking agent behavior (example
%

DEBLIGGING TOOLS

N—

B mean line capacity
B mean peak load of lines

0,52

=

]
TU Delft uuuuuuuuu TVTUUCT VCTTITGCOUUOTT 8

Step 2: Single-agent testing

e What: Explore the behavior of a single agent
e 2 sets of tests:
1. Theoretical prediction tests and sanity checks
« Tests using normal inputs
« Does the agent behave as expected under normal conditions?
2. “Break-the-agent” tests
« Tests using extreme inputs

« Where are the edges of normal behavior?

'i"U Delft SPM 9555 — Model verification 9

Step 2: Single-agent testing

e Theoretical prediction tests and sanity checks:

1. Define some “normal” inputs to the agent

2. Explicitly predict how the agent will behave given these inputs
3. Test how the agent behaves given these inputs
4

. If not as predicted, check if it's a logical error or an implementation
error.

» Break-the-agent tests

1. Define some “extreme” inputs to the agent (e.g. zero, negative
numbers, extremely high numbers, decimals)

2. Predict and test how the agent behaves given these inputs

3. Define boundaries for agent input variables (and make sure the
agent will never receive values outside these boundaries)

'i!U Delft SPM 9555 — Model verification 10

Single-agent testing (example)

ap VERIFICATION TESTS

to single-sheep-test

. "
=g

to single-wolf-test

print "
print "SINGLE WOLF TEST"
print "

resize-world -25 25 -25 25
set-patch-s1ze 9

clear-all
ask patches [set pcolor green]
set-default-shape wolwves "wolf”
create-wolwes 1 ;; create the wolwves, then 1nitialize their variables
[
set color black
set s1ize 2 j; easier to see
set energy starting-wolf-energy
setxy random-xcor random-ycor

]

- reset-ticks

go

]
TU Deli end

Model verification example — single agent and minimal model interaction test-
ing
Single agent: Update-Satisfaction

¢ If all neighbours have a Profpersurf of 100000 (assuming normal profits are way
below this figure), the Statisfaction of the single agent should be -1 for all the
technologies currently owned. Confirmed.

e If all neighbours have a Profpersurf of 100000 (assuming normal profits are way
above this figure), the Statisfaction of the single agent should be 1 for all the
technologies currently owned. Confirmed. the book

e If all neighbours have a Profpersurf of 0, the Statisfaction of the single agent
should be 1 or -1 for all the technolocies currently owned, depending whether its
Profpersurf is positive or negative. Confirmed.

Example from

Single agent: Update-opinionlibraries

e If one neighbour has an opinion of 1 for a given technology (and the Opinion-
changerate is 1 and the Stubbornness is 0) the Opinionlibrary of the single agent
should change from 0 on all technologies to 1 on that given technology (rest
remains 0) after one tick. Confirmed.

e If one neighbour has an opinion of -1 for a given technology (and the Opinion-
changerate is 1 and the Stubbornness is 0) the Opinionlibrary of the single agent
should change from 0 on all technologies to -1 on the given technology (rest
remains 0) after one tick. Confirmed.

e [f one neighbour has an opinion of 1 for all the technolocies (and the Opionion-
changerate is 1 and the stubborness is 0) the Opinionlibrary of the single agent
should change from 0 on all technologies to 1 on all technologies. Confirmed.

Minimal model: Technology and Satisfaction update

e If one neighbour has a given technology but another does not, then after the

technology update code, the new technology should appear in the second agent’s fcati
technology library. Error found. Technologies were added to the second agent’s ication 12

technology library that did not correspond to technologies owned by neighbours. | _

Step 2: Single-agent testing

What if the agent has a memory?
« The agent needs some sort of “history” to make decisions

« We need to create some artificial histories and see how the agent
performs.

- Dynamic signal testing:
« Test the agent with different time-varying signals

« E.g. random signals, signals with continuous in/decreasing values,
signals with step functions and power law distribution of values

'i"U Delft SPM 9555 — Model verification 13

Dynamic signal testing (example)

Accumulation of assets as a function of a series of input signals
MSc thesis Theo van Ruiven

Criginal Signal at 5 levels Growth of assets under EVC decision making
450_ FEREEEEREEEEEE

PSS é ________________ ; ________________ — Ao é
350 b ________________ ________________ K —
300
S ________________ — ________________ ________________
200

160

Accumulated Assets

100

50

0

p L. w0
TU Delft 0 200 400 600 800 1000 0 200 400 600 800 1000
Time Time

Step 3: Interaction testing in a
minimal model

 What: Explore the behavior of a minimal set of agents

« If only one type of agent, include 2 of them
« If more than one type of agent, include one of each
o Same tests as in the previous step:
1. Theoretical prediction tests and sanity checks
2. Break-the-agent tests
* Answer the following questions:
« Do the agents find each other?
« Do the agent interactions happen as defined in the narrative?
* Are the results of these interactions as expected?
 Are there any unintended interactions?

'i!U Delft SPM 9555 — Model verification 15

VERIFICATION TESTS

to minimal -model] -test
print "

print "MINIMAL MODEL TEST"

print "

resize-world © 1 0 O
set-patch-size 100

clear-all
aslk patches [set pcolor green]
set-default-shape sheep "sheegp”
set-default-shape sheep "sheep”
create-sheep 1 ;; create the sheep, then initialize their wvariables
[
set color white
set s1ze 1.5 ;; easier to see
set label-color blue - 2
set energy random (2 * sheep-gain-from-food)
setxy random-xcor random-ycor

set-default-shape wolves "wolf"
create-wolves 1 ;3 create the wolwves, then initialize their wvariables
[

set color black

set s1ze 2 ;; easier to see

set energy random (2 * wolf-gain-from-food)

setxy random-xcor random-ycor

1

reset-ticks

Step 4: Multi-agent testing

o What: Explore the behavior of the entire model with all agents
present.

e 4 sets of tests:
1. Theoretical prediction tests and sanity checks
2. Break-the-agent tests
3. Variability tests
4

. Timeline sanity tests

'i"U Delft SPM 9555 — Model verification 17

Step 4: Multi-agent testing

o Variability tests

« What: Explore the variability of the output in different regions of the
parameter space

- How:
1. Many repetitions (100-1000) across the parameter space
2. Collect values for multiple outputs variables
3. Statistical examination of the results (e.g. variance, std. dev.)
4

Do strange outcomes make sense, or are they artifacts?

'i"U Delft SPM 9555 — Model verification 18

Variability testing (example 1)

Source: SPM 9555 report of Manuel Harmsen and Job Veltman

2. For each input variable value , determine by theory which effect it should have on each output vari;

Output Share of POR balance Product types | Dismantling
biggest chain costs

Input

T Tender levy N 5 b A

1+ Tender rent Jr A J- A

1~ Chains A A > A

1 Products/chain | = - i =>

T Long trend Jr > ? 3

1~ Short trend N = ? A

1 Clustering fctr A ? ™ ?

[

. Execute a whole range of verification tests by choosing standard settings and then change one var

Output Share of POR balance Product types | Dismantling
biggest chain costs
Input

T Tender levy

1~ Tender rent

1~ Chains

> Products/chain
T Long trend

1 Short trend

-]
TUDelft 1 Clustering fctr

KK |4 8|
S R R RVl S B
N R 1 N N P P
NS N NN

Variability testing (example 2)

Source: MSc thesis Andrew Bollinger

Assets of refurbisher agent
(run number 69)
4000
3500 +
.§ 3000

2500 -

2000 -

15000 1L0 210 310 40 50 610 710 810 90 100

tick

% o
TUDelft SPM 9555 — Model verification 20

Step 4: Multi-agent testing

 Timeline sanity tests

« What: Can the outputs be explained by reasoning through the
model logic?

- How:
1. Perform several runs at the default parameter settings
2. Examine the output plots carefully

3. Are there any patterns you can’t explain?

'i"U Delft SPM 9555 — Model verification 21

Timeline sanity testing (example)

populations
2390 B sheep

B wolves
M grass | 4

cL

=]

O

0 %

0 time 395

populations
586 B sheep

/fﬂ N B wolves
Clarass | 4

k
/ \
| [\
33 Y
| 7< H\
] L‘\w-\.__
0

Eime 200

'i"U Delft SPM 9555 — Model verification 22

Veritying your model

* Remember, you're building an evidence file.
* You're demonstrating to yourself and others:

1. This model is bug-free (as much as possible)

2. I know where this model starts to give bogus results

3. I/you can be confident that the results are not artifacts
e What should be in your report:

« See the example from the book (Chapter 3.6.5)

+ See the examples from the previous SPM 9555 class (e.g. Maasvlakte
model)

'i"U Delft SPM 9555 — Model verification 23

