Contact Analysis
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contact phenomena

(a) (b)

courtesy of E.Rank, TUM

= examples:

= sheet metal forming

= crash analysis

= abrasive wear in engines or tyres

= roller bearings in bridges
= mantle friction of piles in soil mechanics

= bone implants, e.g hip joint prosthesis
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contact phenomena

courtesy of E.Rank, TUM

= nonlinear problem — changing boundary conditions during analysis

= often contact region is unknown
= contact search algorithms required in each time step/load step/iteration
= Il search process can easily dominate the analysis

= sophisticated local, global search algorithm required

= task (static/quasi-static problems)

minimize  ITI(u) total potential energy functional

subjectto  G(u) > 0 contact constraints
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contact phenomena — overview

normal contact
= two conditions to be satisfied :
" non-penetration condition —> geom. constraint
= compressive stress condition —> only compressionin "¢

= t, — contact pressure e = 1anTp

= gy —normal gap function
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contact phenomena — overview

normal contact

= two conditions to be satisfied :

" non-penetration condition - geom. constraint
= compressive stress condition - only compressionin I'c
= ty, —contact pressure e = Lanle

= gy — hormal gap function
= related to Kuhn-Tucker conditions Iy

necessary conditions for optimal solution of a

no contact
nonlinear optimization problem [...]

ON
gn 2 07 tN S 07 gNtN = 0

contact

= tensile forces from adhesion possible
—> van der Waals attraction may develop in the contact zone
— ongoing research, in general of negligible effect
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contact phenomena — overview

normal contact

= two conditions to be satisfied :

" non-penetration condition - geom. constraint
= compressive stress condition —> only compressionin T'-
= ty — contact pressure I'e = Tanlpg

= gy —hormal gap function

= related to Kuhn-Tucker conditions

necessary conditions for optimal solution of a
nonlinear optimization problem [...]

gn 2 Oa tN S 07 gNtN = 0

Iy

no contact

On

contact

= gy is non-unique & discontinuous > non-differentiable

© MRu 2014



contact phenomena — overview

tangential contact

© MRu 2014

friction due to relative tangential movement of bodies
conversion of kinetic energy into heat

Coulomb friction reduces complexity = only one parameter U
ts —tangential traction

gs —tangential motion

related to Kuhn-Tucker conditions

1:S

ts| < pty
slip

win I B
ts|] < wpty  stick condition x
ts| = pty  slip condition ? >

s
slip
I S . -pin



contact phenomena — overview

solution methods — weak formulation

... must satisfy the Kuhn Tucker conditions

Lagrange multiplier method

penalty method

mortar methods (weak enforcement of constraints)

Lagrange multiplier method
/ (tN ogn + tg 5gT) da
I'c
penalty method

/ (eN gN Ogn + €5 ggégg) da, eEn,€g > 0 stick condition
NG,

/ (ex gn gy + t5dgs) da, exv >0 slip condition
I'c
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terminology — time t=0

following a master-slave concept

freely chosen: body A —> master
body B - slave
body surfaces 'y & I'p

contactinterface 1I'c = I'4yNIp
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contact — time t#0

ng
€3 A = contact forces f; on '
€2
€1
T fc = fA M fB

Principle of virtual work at ¢ # 0

M
IRRAt m=1 ~ 7 {m Lim
M ~
Z{ f oi; fidc’i}
m=1 Lem

M
m=
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contact forces

AB B ) . A
) fAB) — ¢{yn+igs
$84 v = ({4 n
1?5 — (f(AB))TS

A

fAB _ _ f'BA
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geometry description

SA
/ fAB) — AN n -+ tAS S
n4 tAN _ (f-(AB))Tn
1?5 — (f(AB))TS

n outward pointing normal (positive)

s tangent (forming a right handed coordinate system)

tv & ts normal and tangential stress components

work expression of the virtual relative displacements with contact stresses

/ s\t AP qq
I'c
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kinematics — contact definiton

* indicates components of the
master surface

= contact force at X referred to pointy

= master surface 2> defines set of test points

= slave surface - set of surface points checked for penetration with

master surface
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kinematics — contact definiton

* indicates components of the
master surface

master surface parameterization X = X(&1,&9)

tangent on master surface s = X,(&1,&) a = 1,2
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kinematics — contact definiton

minimal distance function = closest projection point

in || — X(&1, &)

[

Iy — 7|

Y X

><
N E
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kinematics — contact definiton

minimal distance function = closest projection point

Iy — x|

y —X — miAn ||§f—f<(§17§2)||

XCI'4

check condition

giauy—ﬁ(fl,szm .

y — X(&1,62)
|7 — %(&1, &)

which satisfies the minimization problem.

'ﬁ,a(£17§2) = 0
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kinematics — contact definiton

minimal distance function = closest projection point

[y % = min |y~ £(6.&)
condition
4 _ Y ox&&) o _
£a||y (€1, &) 15 — %(6.,6)| ,a(fh&)

satisfies the minimization problem.

NOTE: 8 = X.(&,&%) a=1,2
= tangent to the master surface
" Sis normal to minimum distance vector
= minimum distance vector is normal to master surface

= djstance function not always unique!
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kinematics — gap function

;((‘Sla 52) — f((gla 52) point on the master surface with
minimum distance to on the slave surface

= definition of a gap function = normal contact

gN = (y—ﬁ(ﬁlafz))T'ﬁ(&,fz)

= constraints define states of the contact zone

gy > 0 no contact
gy = 0 perfect contact

gy < 0 penetration
= contact constraints, eliminating penetration

gN = (y—i(glagz))T'ﬁ(§1,£2) > 0
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kinematics — gap function

;((‘Sla 52) — ?A((gla 52) point on the master surface with
minimum distance to on the slave surface

= definition of a gap function (N — normal)

gN = (}A’—ﬁ(&,fz))T'ﬁ(&,fz)

= constraints define states of the contact zone

> ( no contact A
IN how does Ty

gy = 0 perfect contact behave?

gy < 0 penetration
= contact constraints, eliminating penetration

gN = (y_i(glagZ))T'ﬁ(élaéTQ) > 0
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kinematics — gap function

consideration of friction

assumptions:
= Coulomb friction valid pointwise on the surface

= friction coefficient U

ts
= introduction of a dimensionless variable T = MT
N
with (,LL tN) = frictional resistance
. . . . A L ] L ] T
= relative tangential velocity u(X,t) = (uB y(j‘(’t)_uA (gc,t)) S

of ¥ relative to X at time t

T < 1

ﬂ
|

0 implies sgn(i) = sgn(T)

7| < 0 implies @ = 0
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constitutive equations

constitutive equations in the contact zone
- normal contact
= classical approach

= |eads to a non-penetration constraint & compressive stress constraint
for displacements normal to the contact surface

gv = 0, tn <0, gyin =0

= = Kuhn-Tucker conditions

= qglternative: micromechanical approach
= introduction of constitutive equations on the contact surface
— describes the spatial approximation of the bodies A & B

= captures, in general, only essential phenomena of micromechanical
constitutive relations = higher complexity
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constitutive equations

constitutive equations in the contact zone
-> tangential contact
= adhesion OR friction
= requires even more complex micromechanical considerations as
" temperature
= surface roughness
= normal pressure on the surface
= tangential velocity
= often simplified by use of a Coulomb friction model

= requires only a single parameter = friction parameter o/

is] < pin
is|] < piyx  stick condition

ts| = wptxn  slip condition

© MRu 2014



contact interface discretization

node-to-segment (NTS) slave

non-penetration conditions
must be enforced

~

= nodes of the slave is not allowed to penetrate the master surface
= contact conditions are satisfied for the slave nodes
" non-penetration condition satisfied only pointwise on master surface

= problem of non-physical solution close to the interface region

slave
Mter

7\
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contact interface discretization

segment-to-segment (STS) slave

intermdeiate
contact line

N \ Mter

definition of a Cl-continuous intermediate contact line

>

—O—

arbitrary placement of the contact line between the surfaces

" non-penetration condition is satisfied in the mean

gaps & penetrations along the interrface can occur

other alternatives:
= jsogeometric analysis OR p-version FEM with blending functions
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Hertz contact

assumptions

bodies are considered as elastic half spaces

’

homogeneous & isotropic properties

frictionless contact / \

contact area small compared to the bodies S
: P
2b

_ §

A
F

!

Z

unilateral contact bilateral contact
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Hertz contact
numerical model

REEEREEREERERREN

= plane strain assumptions

= bilinear finite elements

Z
J—- 7 rigid

}' FI 77777

S EE—
Runane NN ,
=“““‘“= » ,,:
a“““ ';'0.000

1111

117
1L
TULX

335 elements 995 elements 315 elements
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Hertz contact

numerical model 1.2 . | . PR e —
analytic Hertz solution
8 — 335 elements, 710 dof —-----
T 995 elements, 2060 dof ------
ETEEEEEEERER “,0 & 315 elements, 690 dof -----
8
,~ ‘
g
Z
J—: 7 rigid ;
Y AEELLELTEELEETE 0 0.2 04 06 08 1 1.2 14
contact width
:L] ml“!mlﬂ‘ AY
T
11
it
335 elements 995 elements 315 elements
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to be continued ...
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weak formulation

Principle of virtual work at ¢ # 0 referred to the reference
configuration

M M

Z{/ (Seiksikd?)} — Z{/ 5uiqidv+/ 5uz-pi0da}—|—
Qu Qo r

m=1 m=1 tm

M
mz_:l { /I:cm 5’&@ fzda}

= strains are nonlinear functions of the derivatives (Green-Lagrange)
= stresses (2"9 PK) are referred to base vectors of reference & instant config.
= conservative loads are assumed -2 independent of the displacements

= additional contact forces are considered
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