Physical Nonlinearity
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nonlinear phenomena

phenomena which require consideration of material nonlinearity, e.g.

= analyses of loss of load-bearing capacity

= time-dependent bearing behavior due to time-dependent material
properties

= non-elastic energy absorption from alternating loads due to impulse
loading or earthquake loading

nonlinear incremental solution considers constitutive relations
= state of stress for the computation of

= nodal forces
= geometric stiffness > ... +L225(Aeg)s@dv = ...
i

= stress-strain relation for remaining inner work integrals

© MRu 2014



linear elastic material

o = E(e—¢€)+ 09
€0 prescribed strain
o prescribed stress

e.g. isotropic material
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nonlinear phenomena

) modulus of elasticity
G modulus of rigidity

v Poisson ratio
E
G —
2(1+v)
E
N =

o o ) ©o o <©
o ) © o o <o
QD © o o o o




constitutive models - elastic

= |inear elastic material
stresses are
= exclusively a function of the current state of strain
= independent of the load history 0 )
= for small strains: metals, wood, glass, ...

= before yielding or failure

= nonlinear elastic material
stresses are

= 3 function of the state of strain

Sij = Clijk €l linear elastic

5ii(€) = C’ijkl(é) g nonlinear elastic €
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constitutive models — elasto-plastic

= elasto-plasticity
= elastic up the yield strength = elastic limit (3)
= ...then plastic > irreversible deformation
= requires
= vyield condition
= flow rule
= hardening rule

= vyield condition, e.g. Mohr-Coulomb, von Mises, Tresca, Rankine ...

true elastic limit (crystal dislocation starts)
proportionality limit (Hooke!)

elastic limit (yielding starts)

B w N e

offset yield strength
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constitutive models — hyper-elastic

= hyper-elasticity
= rubber-like material
= models: Mooney-Rivlin, Ogden

= stresses derived from strain energy functional
L~ . :
W = 2 Clijki €ij€rl strain energy
ow

aéij

Mooney-Rivlin
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constitutive models — visco-plastic

= visco-plasticity
= rate-dependent inelastic behavior
= considers
= time-dependent inelastic strains
= vyield stresses may change with time
= velocity effects, includes fluidity parameters

= e.g. metals, polymers

= hypo-elastic
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stress invariants

= invariants are important in nonlinear constitutive relations

" jnvariant w.r.t. the chosen coordinate system

" invariants are functions of stress components

—> properties of isotropic material are independent of

coordinate system

= state of stress
S11
S = |[sSn

S31

512
599

532

513
5923

533

si;  stress component w.r.t. global coordinate system
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stress invariants

S11 S12 S13
= state of stress S = |[S21 S92 So3

531 S32 533

si;  stress component w.r.t. global coordinate system

= stress tensor invariants

]1 = 811 + S99 + S33 = t?“(S)

= Pp1 T+ P2+ P3

Iy = 511592 + S99 S33 + S33 511 — 5%2 - 3%3 - 3%1
= Pp1P2 + P2pP3 + P3p1

]3 — det(S)
= P1P2P3
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= stress tensor invariants

i, = 511+ S99+ 833 = t?“(S)

= p1 T+ P2+ DP3

= P1P2 + P2P3 + P31

]3 — det(S)

— P1P2P3 Pi

- composed stress tensor representation
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S

stress invariants

9 9
Is = 511599 + 599 833 + S33 511 — S7o — So3 — S31

2

i principal strain

1

Shyd + Sdev Shya = pl = 3

| _311 2
3 (11 + S22 + S33) Sdev = S21
i S31

(811 + S99 + s33) 1

512
S99 — P

$32

513
5923
§33 — P




stress invariants

= hydrostatic stress tensor

-> causes change in volume

1
Shya = pl = 5(811+822+833)I

= deviatoric stress tensor

—> causes change of the shape

511 — P 512 513
Sier = So1 S22 — P 823
S31 532 S33 — P

= .. provides the following invariants

J = 0
1
Jy = 6 ((811 — 822)2 + (S92 — 833)2 + (533 — 811)2) + 8%2 + 8%3 + 83,1

J3 = det(Sdev)
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* mechanical interpretation of |, & J, possible

Il = 811+822+833 = t’l”(S)
= p1+p2+p3
1
Jo —

= stress vector on octahedron surface Ps

1
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Sg = [P1 P2 p:ﬂ

&

So = pn—+7t

Pq

stress invariants

G ((811 — 822)2 -- (822 — 833)2 - (833 — 811)2) -+ 8%2 -+ 833 -~ 8%1




stress invariants

= mechanical interpretation of |, & J, possible

= octahedron normal stresses depend only on 1%t invariant |;
= octahedron shear stresses depend only on 2" invariant J,

—> constitutive laws represented w.r.t. invariants or octahedron

stresses
= stress vector on octahedron surface Ps } Pt l'l
1 '.
n’ = L ,
V3
Sy L [P1 P2 p:ﬂ
ERVE!
s
P2
So = pn—+7t
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inelastic material

total stress is not uniquely related to total strain!
- description of the stress-strain relation requires
= response history
= differential stress / strain increments (including temperature effects)

ds;; = Cjy(dey —deg) —del)

d ey total differential strain increment

d el inelastic differential strain increment
d eﬁ? thermal differential strain increment

= inelastic behavior considering time gives
= plasticity : inelastic strains occur immediately with loading
- negligible time span between loading and response
" creep: inelastic strains are a function of time

- time window considered (hours, days, years)
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ideal elasto-plastic material

derivative of a stress-strain relation of form

ds = C%? de
C¥ elastic-plastic material relation matrix
de total strain increment
ds stress increment

r

S = |S11 S22 S33 S12 S23 831]
- ]

e’ = |enn ez e33 (e1at+exn) (e +ex3) (e3+ 631)}
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ideal elasto-plastic material

(1) initial loading = material is linear elastic

Sij = Cijkl €Ll

Clijri stress independent elasticity matrix

(2) maximum stresses that may occur in the material are restricted by the
yield condition (= at yielding F = 0)

F(oy,) = 0
Sij < Oy
oy yield stress

(3) stress increment between adjacent stress states, s and (s+d S), is
orthogonal to the gradient f of the potential F

flds = 0
oF OF O0F O0F OF OF

f p—
0511 0S92 0833 0512 093 0S31
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ideal elasto-plastic material

(4) any change in stresses that satisfies orthogonality condition results in a
elastic and plastic strain increment

deij — de% —|—d€§?j

€ij total strain

€
ij
p
i

e elastic strain part

e plastic strain part

(5) elastic strain increment follows from the elasticity law

(&
dsij = Cijr e

(6) the plastic strain increment is found from the experimentally derived
flow rule
de‘fj = A
0Q 0Q 0Q 0Q 0Q 0Q

8311 6822 6833 8812 8823 8831

qi; —

Q(s) plastic potential of the material

A yield parameter
© MRu 2014



ideal elasto-plastic material

(7) for metallic materials the elastic potential Q is often chosen as the
potential F = associated plasticity / associated flow rule

(8) flow parameter is chosen such that orthogonality condition is satisfied

f'ds = f1C(de—de")

1 T
~ f7C(de - \q) A= Cde
= 0 a = fICq

(9) final material matrix follows from relations (4)—(8)

L — €p

Cgf}d elasto-plastic material matrix

1
C? = C(I-~-qffC)
a

a = fICq
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_ ideal elasto-plastic material
Huber — von Mises
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ideal elasto-plastic material

Drucker — Prager

Mohr — Coulomb

Z3 A
P1=p =
1\? -0 S pz"pg,
~. 2z APt
.\ Rl/‘ ‘
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1 "< 1] L e
7 : Z, Z
\/' R J 1
N\ Y~
/‘ \s /’ ~
P1=P;
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ideal elasto-plastic material

Huber — von Mises

= model, used for metals

" Rincreases uniformly with isotropic hardening Oy > 6y

%3 ) Z3 A

- ~\

\Oy ®

Q
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F(s) = 23+ 2 — R’ _ 0
- (p1—p2)2+(Pz—p3)2+(p3—p1)2—20§ = 0
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hardening

= true yield surface depends on stress curve history of a specific point

= beyond the yield point each stress increment causes
= a plastic strain increment defj
= change of the yield surface

= |aw for the change of the yield surface is derived experimentally
- hardening effect

= hardening effect is expressed with scale factors changing the
material strength and/or plastic potential

= gscale factors follow from
= stress related material laws OR

= work related material laws
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isotropic hardening

= size of the yield surface changes
= shape of the yield surface remains similar
= vield surface parameters are multiplied with the same factor

—> isotropic scaling

ors = €10758
ocs = €10cs
ors, 0Cs tensile/compression strength before initial loading
ors, 0Cs tensile/compression strength after hardening
C isotropic scale factor
D, A / elastic unloading
’ ’A— - . . .
-7 = Eﬁ plastic deformation — hardening
// // \
/ } I — elastic loading
/ L
I /
: , P1
\ e
N s plane strain situation, Huber — von Mises
~ L Qe -
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kinematic hardening

= sijze of the yield surface remains unchanged

= displacement of the yield surface

= every point of the yield surface is displaced by the same increment

= direction of displacement often parallel to the plastic strain increment

Ao = cq
Aoy, kinematic displacement of the yield surface
Co kinematic scale factor

q gradient of the plastic potential

D, A ’/ elastic unloading

H plastic deformation — hardening
// / '

1 |7 ) 7 — elastic loading

/.

. 7/
\
\ /// . pl
~ - -
plane strain situation, Huber — von Mises




stress related material laws

= assumption (here):

hardening and strength of the material depends mainly on the
deviatoric state of stresses

= behavior of such materials is often expressed as function of J,

Jo = = [(pr—p2)* + (p2 — p3)* + (ps — p1)°]

" principal stress

S| =

=+

Di (
steps for the computation of hardening and failure:

(1) initial yield strength is represented as function of stresses

Fi(o,) = 0

oy yield stress
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(2)

(3)

© MRu 2014

stress related material laws

stress increment after yielding causes plastic strain increment
defj = )\Qij
A yield parameter

ij gradient of plastic potential

plastic strain increment changes yield surface. Stress increment does not
satisfy the orthogonality condition thus yield parameter \ requires own
material law

S
1 ds
Sy = JiTt
f gradient of the flow potential F’
Sn component of ds normal to the yield surface
H hardening rate of the material, derived as function of Js



stress related material laws

(4) strain increment follows from substitution of A into the stress-strain

relation
ds = Cyde
C}_Ll _ Cclty qf’
H\/f'f
C clastic material matrix
C, strain-hardened material matrix

(5) the failure surface is derived in analogy to the yield surface, replacing the
yield stress with the failure stress

F(of) = 0

o failure stress
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nonlinear computation with finite elements

= material nonlinear analysis follows from a sequence of linear steps
= step size is adjusted such that approximation is sufficiently good
= the nonlinearity has the following influence

= the material matrix C depends on stresses thus element stiffness K,
depends on state of stresses

= plastic deformation results in prescribed strains =2 6%
depending on state of stresses, the inelastic work W and time t

dp’ = / BIC, de’
Qe

de’ plastic strain increment
d p* element load increment
C. elasticity matrix of the load increment

= development of separate methods for inelasticity and plasticity necessary
since only inelastic deformation is fully reversible

= both methods can be used in combination if both effects are present
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inelastic computation scheme

= introduction of load steps

= each load step increases the external loading by a fixed increment
= each load increment changes displacements and state of stresses
= displacement and stress increments depend on secant matrix

= secant matrix of step m is not known a priori and requires an iterative
scheme within each load step

iteration cycle 1 in load step m
... based on a known deformation state

= at the beginning of load step 1

= state of stresses at the integration points is known
= displacements at the element nodes are zero

= at the beginning of load steps m=2,3,...,M

= deformation state of the previous load step are known

(m—1)
(m—1)
ij

-1 .
© MRu 2014 vi(fm ) displacements at element nodes

stress component at integration point

e strain component at integration point



inelastic computation scheme

iteration cycle 1 in load step m

= at the beginning of load step 1
= at the beginning of load steps m=2, 3, ..., M

= the kinematic and static increments of the load step are unknown

m .
A sgj ) stress 1mmcrement
A e,ET) strain increment
A v,(ﬁ_ ) displacement increment

A pim) load step increment

= determine constitutive relations in load step m dependent on
= hydrostatic stress P
= octahedron shear stress T

= choose initial guess for cycle 1 from load step m-1

pgm) _ p(m—l)
Tl(m) = 7m=1)
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inelastic computation scheme

iteration cycle 1 in load step m

= at the beginning of load step 1

= at the beginning of load steps m=2, 3, ..., M

= the kinematic and static increments of the load step are unknown ...
= determine constitutive relations in load step m dependent on ...

= choose initial guess for cycle 1 from load step m-1 ...

= compute approximation of the stress strain relation from initial guess

As™ = Cp Ael™

i)

A 33(;7:1)) stress increment in cycle 1 of load step m
A egxl)) strain increment in cycle 1 of load step m
Cr,, tangential matrix for stress state glm=1)
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inelastic computation scheme

iteration cycle 1 in load step m

at the beginning of load step 1

at the beginning of load steps m=2, 3, ..., M

the kinematic and static increments of the load step are unknown ...
determine constitutive relations in load step m dependent on ...
choose initial guess for cycle 1 from load step m-1 ...

compute approximation of the stress strain relation from initial guess

governing equations in load step m follow as

K A ng) = A p(m)

K, = Z/ B/C; B, dv
e Q.

K stiffness matrix, cycle 1, load step m
A ng) displacement increment, cycle 1, load step m
Apt™ increment of external load, step m
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inelastic computation scheme

iteration cycles 2, 3, ... in load step m

= use displacement increment of cycle 1 to compute

(m) (m)
Aem _'B”AVMU

(m) (m)
As(l) = CTAeB’(l)

_ o(m—1 (m)
Sy = s )—}—As(l)

= using SET;) allows the computation of octahedron normal and shear stresses
p(lm) _ p(m—l)
Tl(m) _ 7_(m—l)

= from this follows a new stress-strain relation
A S(?.n) = Cg(z) A e(m)

1j(2) ij(2)

A Sgr(;)) stress increment in cycle 2 of load step m

A 61(?2) strain increment in cycle 2 of load step m

} . (m—1) (m)
O MRY 2014 Cs, secant matrix for stress states (s  S(1) )



inelastic computation scheme

iteration cycles 2, 3, ... in load step m

= use displacement increment of cycle 1 to compute ...
= using sgr;) allows the computation of octahedron normal ...
= continuation of the iteration cycle finally gives ...

= improved displacement increments follow as

Ks Avi™” = Ap™

Ks = Z / B! Cs, B.dv
€ Qe

Kg stiffness matrix, cycle 2, load step m
A ng) displacement increment, cycle 2, load step m
Ap™ increment of external load, step m
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inelastic computation scheme

iteration cycles 2, 3, ... in load step m

= use displacement increment of cycle 1 to compute ...

" using sgﬁ) allows the computation of octahedron normal ...
= continuation of the iteration cycle finally gives ...

= improved displacement increments follow as ...

= finally the results of load step m follow as

vim = ym=1) AVE%

(m) _ <(m=1) (m)
S = S +AS(N)

N number of iteration cycles in load step m
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inelastic computation scheme

load increment in load step m+1

= incremental computations produce accumulated errors

= the errors are compensated by considering fictive nodal forces at the end of

load step m

A p(m+1)

s(m)

(m)
€

A p(m+1)
p(m+1)

B.

m)

Ve

m)

€e

(
sém)
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= p(mﬂ)—Z/ Bgsgm) dv
e Qe

S(e(m))

e
B, v

load increment for load step m+1

loading at the end of step m+1

element strain interpolation

displacement vector at the end of load step m
strains at the end of load step m

stresses, computed as a function of strains



elasto-plastic computation scheme

stress path in load step m

= at the beginning of load step 1

= state of stresses and plastic strains at the integration points is known
= displacements at the element nodes are zero

= at the beginning of load steps m=2,3,...,M

= deformation state of the previous load step are known

e’ "=l plastic strains

e Y total strains
stm=1  {otal stresses
vim=D  total displacements

= at the beginning of each load step all stresses are inside or on
the yield surface
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elasto-plastic computation scheme

stress path in load step m

P2 A

’B VS
co&

= stress path from AtoBto C > computed stress path
= stress path from AtoBto D -2 physical stress path
= discontinuity at B

= discontinuity is in general not captured = smeared plastic strain increment
is used instead
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elasto-plastic computation scheme

stress path in load step m -
2

B ~-")

discontinuity is in general not captured > smeared plastic strain increment is
used instead

ds'™ = C(B.dv™ —del™)

€

ds™ stress increment in load step m
dvém) displacement increment in load step m
d e (m) plastic strain increment in load step m
C constant elasticity matrix
B, element strain interpolation matrix
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elasto-plastic computation scheme

stress path in load step m -
2

s
P1
Be” A
ceo&
D

= for the computation of the plastic strain incrementd eg’(m) stresses at B
are required

= additional assumption is used: displacements are linear within load step m
—> for path AB follows
Sp = SA+bCBedvgm)
F(sg) = F(b) = 0
F flow potential of the material

—> determine parameter b such that stresses Sg are on the yield surface
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elasto-plastic computation scheme

iteration cycle 1 in load step m

= constitutive relations for cycle 1 are

dsi) = C(B.dv) —di")

d s%) stress increment in iteration cycle 1
dVE?S) displacement increment in iteration cycle 1
del™ plastic strain increment in iteration cycle 1

= plastic strain increment is unknown a priori 2 material law is
approximated

ds) = Ci™ Bodvll)

elasto-plastic material matrix of step m
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elasto-plastic computation scheme

iteration cycle 1 in load step m

= in cycle 1 the material behavior is elastic

(m)

= in the following cycles 2,3,... the plastic material matrix C"” is set to

matrix of the previous step
= the governing equations follow as

Kg(;'l) dve,(1) = dp( )

p(m) T
Ki" = Z/Q B! C,, B. dv

elasto-plastic stiffness matrix of step m

= from which the displacement increment follows
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elasto-plastic computation scheme

iteration cycles 2,3,... in load step m

= improvement of the material law from cycle 1

= [imit state B is approximated with

SB,(2) = s" 14 pC B. dvg?l))

SB,(2) yield surface stress in iteration cycle 2

s stress at the end of load step m-1

= parameter b is determined such that flow condition is satisfied

= an estimate of the plastic strains is found from an estimate of the plastic
strains at state D = consider

deyp = deSp+deyy,

deyp change of the total strain from A to D
deSp change of the elastic strain from A to D
dely change of the plastic strain from B to D
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elasto-plastic computation scheme

iteration cycles 2,3,... in load step m

®» the strain increments follow from

e
deAD

p
deBD

dSAB

dsgp

aB
A

Cc! dSilD — C! (dSAB —I—dSBD)
AQB

change of elastic stresses
change of elasto-plastic stresses
gradient of the plastic potential for state B

yield parameter in step m

= substitution gives for the strain increment AD

CdeAB

© MRu 2014
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elasto-plastic computation scheme

iteration cycles 2,3,... in load step m

stress increment d Sgp must be on the limit surface

the yield parametel \ follows from

fidspp = f5 (Cdesp —dsap —ACqp) = 0

an improved estimate for the plastic strain increment in step m follows as

1
defyp, = —(f5C deap — fpdsap) qs
a = fngB

this improves the constitutive relation to

1
dSAD = a(fgdSAB)CqB—{—Cep.eAD

1
C? = C(I- —qpf;C)
a
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iteration cycles 2,3,...

elasto-plastic computation scheme

in load step m

= anew displacement increment is computed with the elasto-plastic law

K? dv'

(2) ™ (2

m)

)

dq™ +dq

—Z/ fhdsap) BICqpdv

stress correction of the load vector of cycle 2

= jteration is continued until stress state D is sufficient close to the limit
surface for all plastic integration points
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