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nonlinear phenomena 

phenomena which require consideration of material nonlinearity, e.g. 
 

 analyses of loss of load-bearing capacity 

 time-dependent bearing behavior due to time-dependent material 
 properties 

 non-elastic energy absorption from alternating loads due to impulse 
 loading or earthquake loading  

 ... 
 

nonlinear incremental solution considers constitutive relations  

 state of stress for the computation of 

 nodal forces 

 geometric stiffness         ...     = ... 

 

 stress-strain relation for remaining inner work integrals 
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nonlinear phenomena 
 

linear elastic material 

 

 
 

 

 

e.g. isotropic material 
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constitutive models - elastic 

 

 linear elastic material 

stresses are 

 exclusively a function of the current state of strain 

 independent of the load history  

 for small strains: metals, wood, glass, ... 

 before yielding or failure 

 

 

 nonlinear elastic material  

stresses are 

 a function of the state of strain 

 
 

 



© MRu  2014 

constitutive models – elasto-plastic 

 

 elasto-plasticity 

 elastic up the yield strength  =  elastic limit (3) 

 ... then plastic    irreversible deformation 

 requires 

 yield condition 

 flow rule 

 hardening rule 

 yield condition, e.g. Mohr-Coulomb, von Mises, Tresca, Rankine ... 
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1. true elastic limit (crystal dislocation starts) 

2. proportionality limit (Hooke!) 

3. elastic limit (yielding starts) 

4. offset yield strength 
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constitutive models – hyper-elastic 

 

 hyper-elasticity 

 rubber-like material 

 models: Mooney-Rivlin, Ogden 

 stresses derived from strain energy functional  

 

 

 

 

 

 

 

 
 

 

Mooney-Rivlin 
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constitutive models – visco-plastic 

 

 visco-plasticity 

 rate-dependent inelastic behavior 

 considers  

 time-dependent inelastic strains 

 yield stresses may change with time 

 velocity effects, includes fluidity parameters  

 e.g. metals, polymers 

 

 hypo-elastic 

 ... 
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stress invariants 

 

 invariants are important in nonlinear constitutive relations 

 invariant w.r.t. the chosen coordinate system 

 invariants are functions of stress components 

properties of isotropic material are independent of   
  coordinate system 

 

 

 state of stress 
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stress invariants 

 state of stress 

 

 

 

 

 stress tensor invariants 
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stress invariants 

 stress tensor invariants 

 

 

 

 

 

 

 

 

 composed stress tensor representation 
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stress invariants 
 

 hydrostatic stress tensor 

  causes change in volume  

 

 

 deviatoric stress tensor 

  causes change of the shape  

 

 

 

 

 ... provides the following invariants 
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stress invariants 
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 mechanical interpretation of I1 & J2 possible 

 

 

 

 

 

 stress vector on octahedron surface 
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stress invariants 

p1 
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 mechanical interpretation of I1 & J2 possible 

 

 octahedron normal stresses depend only on 1st invariant I1 

 octahedron shear stresses depend only on 2nd invariant J2 

constitutive laws represented w.r.t. invariants or octahedron 
 stresses 

 

 stress vector on octahedron surface 
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inelastic material 

total stress is not uniquely related to total strain! 

 description of the stress-strain relation requires 

 response history 

 differential stress / strain increments (including temperature effects) 

 

 

 

 

 

 inelastic behavior considering time gives 

 plasticity :  inelastic strains occur immediately with loading 

       negligible time span between loading and response 

 creep :  inelastic strains are a function of time 

       time window considered (hours, days, years) 
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ideal elasto-plastic material 

derivative of a stress-strain relation of form 
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ideal elasto-plastic material 

(1) initial loading  material is linear elastic 

 

 

 

(2) maximum stresses that may occur in the material are restricted by the 
yield condition ( at yielding F = 0) 

 

 

 

 

(3) stress increment between adjacent stress states, s and (s+d s), is 
orthogonal to the gradient f of the potential F 
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ideal elasto-plastic material 

(4) any change in stresses that satisfies orthogonality condition results in a 
elastic and plastic strain increment 

 

 

 

 
 

(5) elastic strain increment follows from the elasticity law 

 
 

(6) the plastic strain increment is found from the experimentally derived  
flow rule 
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ideal elasto-plastic material 

(7) for metallic materials the elastic potential Q is often chosen as the 
potential F   associated plasticity / associated flow rule 
 

(8) flow parameter is chosen such that orthogonality condition is satisfied  

 

 

 

 

(9) final material matrix follows from relations (4)—(8) 
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ideal elasto-plastic material 

p1=p3 p2=p3 

p1=p2 

z3 

z2 

R 

z3 

z2 

R 

z3 

z3 

z1 

z1 

Huber – von Mises 

Tresca 
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ideal elasto-plastic material 

p1=p3 p2=p3 

p1=p2 

z3 

z2 

z3 

z2 

R 

z3 

z1 

Drucker – Prager 

Mohr – Coulomb 

R 

R 
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R1 
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ideal elasto-plastic material 

z3 

z2 

R 

z3 

z1 

Huber – von Mises 
 

 model, used for metals 

 R increases uniformly with isotropic hardening            
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hardening 

 true yield surface depends on stress curve history of a specific point 

 beyond the yield point each stress increment causes 

 a plastic strain increment 

 change of the yield surface 

 law for the change of the yield surface is derived experimentally 

hardening effect 

 hardening effect is expressed with scale factors changing the 
 material strength and/or plastic potential 

 scale factors follow from  

 stress related material laws  OR 

 work related material laws 
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isotropic hardening 
 

 size of the yield surface changes 

 shape of the yield surface remains similar 

 yield surface parameters are multiplied with the same factor 

 isotropic scaling 
 

p2 

p1 

elastic loading 

plastic deformation – hardening 

elastic unloading 

plane strain situation, Huber – von Mises 
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kinematic hardening 

 size of the yield surface remains unchanged 

 displacement of the yield surface 

 every point of the yield surface is displaced by the same increment 

 direction of displacement often parallel to the plastic strain increment 

p2 

p1 

elastic loading 

plastic deformation – hardening 

elastic unloading 

plane strain situation, Huber – von Mises 



© MRu  2014 

stress related material laws 

 assumption (here):  

hardening and strength of the material depends mainly on the 
 deviatoric state of stresses  

 

 behavior of such materials is often expressed as function of J2 

 

 

 

 

 

steps for the computation of hardening and failure: 
 

(1) initial yield strength is represented as function of stresses 
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stress related material laws 
 

(2) stress increment after yielding causes plastic strain increment 

 

 

 
 

 

(3) plastic strain increment changes yield surface. Stress increment does not 
satisfy the orthogonality condition thus yield parameter      requires own 
material law 
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stress related material laws 
 

(4) strain increment follows from substitution of      into the stress-strain 
relation 

 

 

 

 

 

 

(5) the failure surface is derived in analogy to the yield surface, replacing the 
yield stress with the failure stress 
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nonlinear computation with finite elements 

 material nonlinear analysis follows from a sequence of linear steps 

 step size is adjusted such that approximation is sufficiently good 

 the nonlinearity has the following influence 

 the material matrix C depends on stresses thus element stiffness Ke 
depends on state of stresses 

 plastic deformation results in prescribed strains   

 depending on state of stresses, the inelastic work W and time t 

 

 

 

 

 

 development of separate methods for inelasticity and plasticity necessary 
since only inelastic deformation is fully reversible 

 both methods can be used in combination if both effects are present 
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inelastic computation scheme 
 introduction of load steps 

 each load step increases the external loading by a fixed increment 

 each load increment changes displacements and state of stresses 

 displacement and stress increments depend on secant matrix  

 secant matrix of step m is not known a priori and requires an iterative 
scheme within each load step 
 

iteration cycle 1 in load step m 

… based on a known deformation state 
 

 at the beginning of load step 1 

 state of stresses at the integration points is known 
 displacements at the element nodes are zero 

 at the beginning of load steps m=2,3,…,M 

 deformation state of the previous load step are known 
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inelastic computation scheme 
iteration cycle 1 in load step m 
 

 at the beginning of load step 1    … 

 at the beginning of load steps m=2, 3, …, M     … 

 the kinematic and static increments of the load step are unknown 

 

 

 

 
 

 determine constitutive relations in load step m dependent on 

 hydrostatic stress 

 octahedron shear stress 

 choose initial guess for cycle 1 from load step m-1 
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inelastic computation scheme 
iteration cycle 1 in load step m 
 

 at the beginning of load step 1    … 

 at the beginning of load steps m=2, 3, …, M     … 

 the kinematic and static increments of the load step are unknown … 

 determine constitutive relations in load step m dependent on … 

 choose initial guess for cycle 1 from load step m-1 … 

 compute approximation of the stress strain relation from initial guess 
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inelastic computation scheme 
iteration cycle 1 in load step m 
 

 at the beginning of load step 1    … 

 at the beginning of load steps m=2, 3, …, M     … 

 the kinematic and static increments of the load step are unknown … 

 determine constitutive relations in load step m dependent on … 

 choose initial guess for cycle 1 from load step m-1 … 

 compute approximation of the stress strain relation from initial guess 

 governing equations in load step m follow as 
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inelastic computation scheme 
iteration cycles 2, 3, …  in load step m 
 

 use displacement increment of cycle 1 to compute 

 

 

 

 
 

 using          allows the computation of octahedron normal and shear stresses 

 

 

 

 from this follows a new stress-strain relation 
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inelastic computation scheme 
iteration cycles 2, 3, …  in load step m 
 

 use displacement increment of cycle 1 to compute … 

 using          allows the computation of octahedron normal … 

 continuation of the iteration cycle finally gives … 

 improved displacement increments follow as 
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inelastic computation scheme 
iteration cycles 2, 3, …  in load step m 
 

 use displacement increment of cycle 1 to compute … 

 using          allows the computation of octahedron normal … 

 continuation of the iteration cycle finally gives … 

 improved displacement increments follow as … 

 finally the results of load step m follow as 
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inelastic computation scheme 

load increment in load step m+1 
 

 incremental computations produce accumulated errors 

 the errors are compensated by considering fictive nodal forces at the end of 
load step m  
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elasto-plastic computation scheme 

stress path in load step m 
 

 at the beginning of load step 1 

 state of stresses and plastic strains at the integration points is known 
 displacements at the element nodes are zero 

 at the beginning of load steps m=2,3,…,M 

 deformation state of the previous load step are known 

 

 

 

 

 

 at the beginning of each load step all stresses are inside or on  
 the yield surface  
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elasto-plastic computation scheme 

stress path in load step m 
 

 

 

 

 

 

 

 

 

 stress path from A to B to C     computed stress path 

 stress path from A to B to D     physical stress path 

 discontinuity at B 

 discontinuity is in general not captured  smeared plastic strain increment 
is used instead 

p2 

p1 

A B 

D 

C 



© MRu  2014 

elasto-plastic computation scheme 

stress path in load step m 
 

 

 

 

 

 

 

discontinuity is in general not captured  smeared plastic strain increment is 
used instead 

p2 

p1 

A B 

D 

C 
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elasto-plastic computation scheme 

stress path in load step m 
 

 

 

 

 

 

 

 for the computation of the plastic strain increment                stresses at B 
are required 

 additional assumption is used:  displacements are linear within load step m 

for path AB follows 

 

 

 

determine parameter b such that stresses sB are on the yield surface 

p2 

p1 

A B 

D 

C 
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elasto-plastic computation scheme 

iteration cycle 1 in load step m 
 

 constitutive relations for cycle 1 are 

 

 

 

 

 

 

 plastic strain increment is unknown a priori  material law is 
approximated 
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elasto-plastic computation scheme 

iteration cycle 1 in load step m 
 

 in cycle 1 the material behavior is elastic 

 in the following cycles 2,3,…  the plastic material matrix                is set to 
matrix of the previous step 

 the governing equations follow as 

 

 

 

 

 

 from which the displacement increment follows 
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elasto-plastic computation scheme 

iteration cycles 2,3,… in load step m 
 

 improvement of the material law from cycle 1 

 limit state B is approximated with 

 

 

 

 

 parameter b is determined such that flow condition is satisfied 

 an estimate of the plastic strains is found from an estimate of the plastic 
strains at state D  consider  
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elasto-plastic computation scheme 

iteration cycles 2,3,… in load step m 
 

 the strain increments follow from 

 

 

 

 

 

 

 

 substitution gives for the strain increment AD 
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elasto-plastic computation scheme 

iteration cycles 2,3,… in load step m 
 

 stress increment               must be on the limit surface 

 the yield parameter      follows from 

 

 

 an improved estimate for the plastic strain increment in step m follows as 

 

 

 

 

 this improves the constitutive relation to 
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elasto-plastic computation scheme 

iteration cycles 2,3,… in load step m 
 

 a new displacement increment is computed with the elasto-plastic law 

 

 

 

 

 

 iteration is continued until stress state D is sufficient close to the limit 
surface for all plastic integration points 


