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LOCATION AND TIMINGS

Theory Lectures

Lecture 1
Tuesday, September 1, 1545 to 1730
EWI-Lecture hall Chip

All other lectures
Tuesdays, 1345 to 1530
(September 8, 15, 20, 29;
October 6, 13)
AULACZA
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Practicals

Thursdays, 0845 to 1230
LR-PC 007

4 hours! Do not miss!



COURSE SETUP

* Blended Online Learning

* Flipped Classroom “Homework” is not graded! Its for your practice and understanding!

* Theory / Practical “Assignment” is graded!
* Assignment-based

* NO FINAL EXAM

« 7 weeks (1 theory + 1 practical)

* Homework: video lecture/lecture notes

« 3 theory based assignments (Weeks 2, 4 and 6)

* |2 practical assignments (Weeks 4 and 6) | Not take home!

*  Weekly topics: Blackboard (under course information/course setup)
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COURSE SETUP

« Contact

* Discussion board (All questions must be posted here first!)

« 2nd point: TA; TA will post questions on the discussion board anyway; so do it yourself to avoid delays
* Peer2Peer/Interaction

» Use your own knowledge database: your peers

* Respond to questions and discussions on the discussion board

* Debate: you are all engineers, share your experiences

*  Our team will wait for some of you to answer questions on discussion board first before stepping in

* Help us to Help you!

* There are no open office hours!
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COURSE SETUP

e Study material
» Slides and Recorded lectures on Blackboard
*  Support videos and lecture notes on Blackboard
* Reference books
* Finite Element Procedures, K.J. Bathe, 1995 (Prentice Hall)
« Concepts and Applicational of Finite Element Analysis, R.D. Cook, D.S. Malkus, M.E. Alesha and R.J. Witt,
2002 (John Wiley & Sons)
* The Finite Element Method in Engineering, S.S. Rao, 2005 (Elsevier Inc.)
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WHY STUDY THIS?

*  One of the most widely used methods for numerical solutions, both in research and industry

* Become a wise FE user; avoid worthless results

« Don't just push buttons on a commercial code; Qil platforms have collapsed due to insufficient FE analysis (Sleipner A)
* Increase your skill set and be a better engineer

* Be prepared for a Master thesis assignment

The sinking of the Sleipner A offshore platform

The investigation into the accident is described in 16 reports...

The conclusion of the investigation was that the loss was caused by a failure in a cell wall, resulting in a serious
crack and a leakage that the pumps were not able to cope with. The wall failed as a result of a combination of a
serious error in the finite element analysis and insufficient anchorage of the reinforcement in a critical zone.
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DESIRED SKILL SET

Linear Algebra

Calculus |

Calculus Il

Aerospace Mechanics of Materials
Applied Numerical Analysis
Computational Modelling
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TODAY...

 What is the Finite Element Method?
 A‘bar” element
e Direct Stiffness method
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ANALYSIS IN GENERAL

Exact methods

Analytical methods

—

Differential Equation
(Problem)
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Approximate methods

Finite Differences
Numerical Integration

Numerical methods

o

Finite/Discrete element method
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FINITE ELEMENT METHOD

« ..or Finite Element (FE) Analysis is a method for numerical solution of problems where a field quantity is sought.

v versatility : displacement field, temperature field, stream function, etc.

v approximate solution : except simple problems where an exact formula already exists

«  Definition
soveral clomos tofor || lements s cefned na | Thes clmenisare || Result svera
: glued together at nodes | | simultaneous equations
a mesh simple way

—

Field quantity is allowed to
have a simple spatial
variation over an element

Piecewise polynomial
interpolation

]
TUDelft

Equilibrium equation is
These elements are setup for the entire Mesh.
glued together at nodes Minimised for all

unknowns

Mesh is represented by a
system of algebraic
equations, solved at
nodes for unknowns
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FINITE ELEMENT METHOD

Piecewise polynomial
interpolation

]
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Field quantity is allowed to
have a simple spatial
variation over an element

These elements are
glued together at nodes

Equilibrium equation is
setup for the entire Mesh.
Minimised for all
unknowns

Mesh is represented by a
system of algebraic
equations, solved at
nodes for unknowns

Picture courtesy: Comsol
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Piecewise polynomial
interpolation
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Field quantity is allowed to
have a simple spatial

These elements are

Equilibrium equation is
setup for the entire Mesh.
Minimised for all
unknowns

Mesh is represented by a
system of algebraic
equations, solved at
nodes for unknowns

variation over an element glued together at nodes
Minimization of
a function )
— Algebraic
I— equations
g Nodal field A

L quantities )

Characteristic Matrix

KU=F

(Stiffness)

Nodal unknowns
(Displacement)

An FEA solution is not exact! But it can be improved!

Applied/unknown
loads
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STEPS IN AFINITE ELEMENT ANALYSIS

Pre-processing

|dealisation
Classification
Modelling Numerical Analysis
Discretisation * Equilibrium Equations
* Element types e Solution

Interpolation
Degrees of Freedom (d.o.f)
Errors!

Load, Support, Materials

]
TUDelft

>

Post-processing
Sorting the direct output
Listing
Derived output
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THE ESSENTIAL...

Selection of suitable
Discretization interpolation/displacement
model
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Element stiffness and
load calculations
followed by solving
equilibrium equations

Meshing and solution for
unknown nodal
displacements

Computation of derived
results, i.e., stress and
strain
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BAR ELEMENT - TRUSS SYSTEM
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BAR ELEMENT - STIFFNESS MATRIX

Direct Method
Formal Procedure

* 1-D element IF, | F,
* Rod!

]
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A = Area of Cross-section
E = Modulus of Elasticity
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EXAMPLE PROBLEM - SIMPLE BAR WITH AXIAL LOAD

A
% E, A P
/! :

<

1. Idealization and Discretisation

)P1i )P2i

. .  Elements
1 @ ' W

* Nodes

: U : U
1 i «  Degrees of Freedom

18
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2. Displacement function/Interpolation Model/
Interpolation function

*  Polynomials

A

assumption

]
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Zero-order

First-order

A )
assumption *

Third-order
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* Linear displacement model

| P —r |
U Y
< l >
>
X

]
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Let us assume
U= a; + a,.x ——(1)

We know that

ulx)=uw; at x=x;
—(2)

ulx)=u; at x=x;

Substituting (2) in to (1)
U, = -+ Ayp. X

—()

u] - a1 + az.xj

Solving for unknowns
Ui X — Uj. X; Uj — U

@ =—"—1— & a= >(4)

| [
So, displacement model (1) can be written as

Ui Xj — Uj. X Ui — U;
U= J J + J

[ [
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Rearranging o = %i-%j ;uj'xi + Y ?ui X For the current case,
=Ni(x).ul- +N](x)u] Atx =0, Uu=1u
= [Nx)Ju¢ —>0) Uy — Uq
oo U — ul + l X
e U; Linear displacement model
Xj—X
Ni(x) = —
And, == Shape functions!
X — X
Nj(x) = I

21
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Substituting (8) in to (7)
le

E€A® Uy — Uq\2
Principal of minimum potential energy [1¢ = f ( i 1) .dx

3. Equilibrium equation

Potential Energy I =11 — W,

/ \ E¢A® f’e (uf +us — 2u1u2)
= .dx
0

Strain Energy  External Work 2 [e?
For anelement, i, E€A® [u? + u? —2u.u
1 2 142
e — — Ae €€ — - e —0
I fo zAae.dx Ia E.eI 2 ( €2 )( )
E€A® (e E€A€
= €€“ . dx —_—>(7 _ 2 2
2 fo ) ~ e (ui +u; — 2uqu,)
From the interpolation model derivation, we know that Rearranging in matrix format
U — Uy
U=u +——.x Uy
ST e = [u; ] )
Therefore, 2
ou u,—u I NN
=2 1 —(8) ne =-u® [KJu® —>0©)

1 ;
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Work done due to external forces

VVp=u1P1 +u2P2

=P
Minimum Potential Energy
al .
S =0, i=12,..
ol 9 [\
u, Ju; -

]
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—(10)

4. Solution of unknown displacements

Let us assume

E€A®

= 4x10°

le
Given that,
P1=R & P2=1

And,

—

Ki=P

»ax10°[ L [l = [1]
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LETS MAKE THIS FUN!

—P : P,
Same problem; different idealisation! 1 ' —)Po: —> 2:
Two elements! 1 *O 2
What changes? U — U — 3

Potential Energy I = 1* + 112 = W, ———>(A)

EA
= 2 — (uf + uf — 2uquy) + —

5 l — (u§ + uj — 2ugu,) — Pyuy — Pyuy — Pou,

2

Minimum Potential Energy

O _EA ) 4 A
du, 21t Al

dl  EA ol EA
o 1 8 = 22w, —2ul— P
ou, 21 o7 (2w~ 2ul = Py du, 21 [2u = 2uo] = P,

[2up — 2uz] = Py

24
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Rearranging equations (B)

Uy U 0
K _u1 zuo _uz
O _uo uz

(C) resembles equilibrium equation
Ki=P

Substituting material properties,

el 6-1 |
K¢ = 4x10 1 1.
1 —1

K¢ = 4x10°
xOh_1 1
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Py
Py
P,

—>(C)

Assembling element matrices,

_ 1 -1 014
K=4x10|-1 1+1 —1]|u0|*?
0 -1 1]l

_ 1 -1 0 1
K=4x10|-1 2 —1||uol|X?
| 0 -1 11Jlu
— (D)

Solution of (C) gives unknown field quantities

** x 2 ; because the length of the element is also halved!
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5. Derived results

Strain
ou
€ = —
0x
Stress
og=E.€

]
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RECAP

|dealization

Displacement methods
* Interpolation models
* Interpolation functions/ Shape functions
* Element Stiffness matrix
e Assembly
* Load vectors
*  Solution for displacements
* Element strains and stresses
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HOMEWORK

*  Check blackboard for practice problems on direct stiffness approach
* Read revision lecture notes on Calculus of Variations
* Answer Self-Check questions and discuss on the forum

]
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NEXT WEEK...

« Variational approach
« Setting up a finite element equation using the variational approach

PRACTICALS

e Tutorials
* Discretization

&1f you will use your own laptop for the practicals, please install the software you will use prior to the practical session
tomorrow!
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