# LINEAR MODELLING (INCL. FEM) AE4ASM003 <br> P1-2015 

LECTURE 5
29.09.2015

## TODAY...

- Isoparametric formulation
- Constant strain triangular elements
- Bending elements

ISOPARAMETRIC FORMULATION

## FORMULATION PROPERTIES

- same interpolation functions for geometry and displacement
- tedious/confusing!
- simpler for computer program formulation
- extended application to all element types
- idealisation of elements with curved boundaries


## NATURAL OR GENERALISED COORDINATE SYSTEM

Let us assume a polynomial for the geometry

$$
\begin{align*}
& x=a_{0}+a_{1} r  \tag{1}\\
& \text { at } x=x 1, \quad r=-1 \\
& \text { at } x=x 2, \quad r=+1
\end{align*}
$$

(2)


Solving and substituting back into x ,

$$
\begin{align*}
x & =\frac{x 1+x 2}{2}+\frac{x 2-x 1}{2} \cdot r  \tag{3}\\
& =\frac{1-r}{2} \cdot x 1+\frac{1+r}{2} \cdot x 2 \tag{4}
\end{align*}
$$

Therefore,
$x=N_{1} x 1+N_{2} x 2 \quad$ where $\quad N_{1}=\frac{1-r}{2} ; \quad N_{2}=\frac{1+r}{2}$

$r$ is the natural coordinate system
This natural coordinate is attached to the bar no matter how it is oriented or placed in space
Therefore, a transformation to the global coordinate system must be made - Transformation mapping!


So, lets carry out the steps of the finite element analysis using this formulation:
Step 1: interpolation model
Step 2: strain and stress of the system
Step 3: stiffness matrix definition
Step 4: transformation


Step 5: load vector
Step 6: results

Step 2: strain and stress of the system

$$
\begin{align*}
& x=N_{1} x_{1}+N_{2} x_{2} \\
& u=N_{1} u_{1}+N_{2} u_{2} \tag{5}
\end{align*}
$$

Strain in local coordinate

$$
\begin{equation*}
\epsilon_{r}=\frac{d u}{d r}=\frac{d u}{d x} \cdot \frac{d x}{d r} \tag{6}
\end{equation*}
$$

Strain in global coordinate

$$
\begin{array}{cl}
\epsilon_{x}=\frac{d u}{d x}=\frac{d u}{d r} / \frac{d x}{d r} \quad \longrightarrow(7) \\
\text { where } \quad \frac{d u}{d r}=\frac{u_{2}-u_{1}}{2} \quad \text { and } & \frac{d x}{d r}=\frac{x_{2}-x_{1}}{2}=\frac{l}{2}
\end{array}
$$

Substituting in (7),

$$
\epsilon_{x}=\left[\begin{array}{ll}
-\frac{1}{l} & \frac{1}{l}
\end{array}\right]\left\{\begin{array}{l}
u_{1}  \tag{9}\\
u_{2}
\end{array}\right\}
$$

Therefore, by definition, $\quad[B]=\left[\begin{array}{ll}-\frac{1}{l} & \frac{1}{l}\end{array}\right] \quad$ and, stress $\quad \sigma=E[B]\{u\}$

In this case, the matrix $B$ is simple because of the choice of the element.
In general, for higher order elements, B will be a function of the natural coordinate.
We will notice this difference for other elements such as higher order beams, triangular or quadrilateral elements.
Step 3: stiffness matrix definition

We know that

$$
\begin{equation*}
k=\int_{0}^{l}[B]^{T} E[B] A \cdot d x \tag{11}
\end{equation*}
$$

Step 4: transformation
From the reasoning above, B is generally a function of r , and therefore, the coordinate must be transformed for integration

$$
\int_{0}^{l} f(x) \cdot d x=\int_{-1}^{1} f(r) \cdot|[J]| d r \quad \text { where } \begin{array}{r}
|[J]|=J \\
\text { Jacobian }
\end{array} \quad \text { for a 1D case }
$$

So, for the current assumed problem

$$
\begin{equation*}
J=\frac{d x}{d r}=\frac{l}{2} \tag{13}
\end{equation*}
$$

Substituting it back into (11)

$$
\begin{align*}
k & =\frac{l}{2} \int_{-1}^{1}[B]^{T} E[B] A \cdot d r \\
& =\frac{A E}{l}\left[\begin{array}{cc}
1 & -1 \\
-1 & 1
\end{array}\right] \tag{14}
\end{align*}
$$

${ }^{* * *}$ For higher order elements, this integration is near-impossible so some numerical integration techniques are used

Step 5: load vector

Body forces

$$
\begin{align*}
\left\{f_{b}\right\} & =\int_{V}[N]^{T}\left\{X_{b}\right\} d V \\
& =\int_{x}[N]^{T}\left\{X_{b}\right\} A d x  \tag{15}\\
& =\frac{A L X_{b}}{2}\left\{\begin{array}{l}
1 \\
1
\end{array}\right\}
\end{align*}
$$

Surface forces

$$
\begin{aligned}
\left\{f_{s}\right\} & =\int_{S}\left[N_{s}\right]^{T}\left\{T_{X}\right\} d S \\
& =\int_{x}\left[N_{s}\right]^{T}\left\{T_{X}\right\} d x \\
& =\left\{T_{X}\right\} \frac{L}{2}\left\{\begin{array}{l}
1 \\
1
\end{array}\right\}
\end{aligned}
$$

PLATE ANALYSIS



$\qquad$
$\qquad$
$\qquad$ PLATE ANALYSIS ．


[^0] PLATEANALYSIS PLATEANALYS｜S





## TYPES OF PLATE ELEMENTS

- Any plate under in-plane and transverse loads will deform in 3 spatial coordinates
- Assuming the linear small deflection theory, uncoupling occurs
- in-plane (membrane) forces
- transverse (bending) forces


# MEMBRANE ELEMENTS <br> - CONSTANT STRAIN TRIANGLES 

The same process has to be followed:
Step 1: interpolation model
Step 2: strain and stress of the system
Step 3: stiffness matrix definition
Step 4: transformation
Step 5: load vector
Step 6: results

Step 1: interpolation model

$$
\begin{aligned}
& u(x, y)=a_{1}+a_{2} x+a_{3} y \\
& v(x, y)=a_{4}+a_{5} x+a_{6} y
\end{aligned}
$$



$$
\begin{array}{lll}
u(x, y)=u 1 \& v(x, y)=v 1 & \text { at }(x 1, y 1) \\
u(x, y)=u 2 \& v(x, y)=v 2 & \text { at }(x 2, y 2)
\end{array}
$$

$$
u(x, y)=u 3 \quad \& \quad v(x, y)=v 3 \quad \text { at }(x 3, y 3)
$$

Solving for the constants and substituting and rearranging,

$$
\vec{U}=\left\{\begin{array}{l}
u(x, y) \\
v(x, y)
\end{array}\right\}=[N] \vec{u}^{e}
$$

(iii)
where

$$
[N(x, y)]=\left[\begin{array}{cccccc}
N_{1} & 0 & N_{2} & 0 & N_{3} & 0 \\
0 & N_{1} & 0 & N_{2} & 0 & N_{3}
\end{array}\right]
$$

and,

$$
\begin{aligned}
& N_{1}=\frac{1}{2 A}\left[y_{32}(x-x 2)-x_{32}(y-y 2)\right. \\
& N_{2}=\frac{1}{2 A}\left[-y_{31}(x-x 3)+x_{31}(y-y 3)\right. \\
& A=\frac{1}{2}\left(x_{32} y_{21}-x_{21} y_{32}\right)=\text { area of triangle } 123 \\
& x_{i j}=x i-x j \\
& N_{3}=\frac{1}{2 A}\left[y_{21}(x-x 1)-x_{21}(y-y 1)\right. \\
& y_{i j}=y i-y j \\
& \vec{u}^{e}=\left\{\begin{array}{l}
u 1 \\
v 1 \\
u 2 \\
v 2 \\
u 3 \\
v 3
\end{array}\right\}^{e}
\end{aligned}
$$


$u, v$ should yield constant value for a rigid body displacement
Therefore,

$$
N_{1}+N_{2}+N_{3}=1
$$



for all $\mathrm{x}, \mathrm{y}$ locations

From solid mechanics,

$$
\vec{\epsilon}=\left\{\begin{array}{l}
\epsilon_{x x}  \tag{vi}\\
\epsilon_{y y} \\
\epsilon_{x y}
\end{array}\right\}=\left\{\begin{array}{c}
\partial u / \partial x \\
\partial u / \partial y \\
\frac{\partial u}{\partial y}+\frac{\partial v}{\partial x}
\end{array}\right\}
$$

which can be written in terms of nodal displacements as,

$$
\vec{\epsilon}=[B] \vec{u}^{e}
$$

$$
\longrightarrow(\mathrm{vii})
$$

where $\quad[B]=\frac{1}{2 A}\left[\begin{array}{cccccc}y_{32} & 0 & -y_{31} & 0 & y_{21} & 0 \\ 0 & -x_{32} & 0 & x_{31} & 0 & -x_{21} \\ -x_{32} & y_{32} & x_{31} & -y_{31} & -x_{21} & y_{21}\end{array}\right]$

For a plane stress condition,

$$
\vec{\sigma}=[D] \vec{\epsilon}
$$

$$
\text { where } \quad \vec{\sigma}=\left\{\begin{array}{c}
\sigma_{x x} \\
\sigma_{y y} \\
\sigma_{x y}
\end{array}\right\} \quad \text { and, } \quad[D]=\frac{E}{1-v^{2}}\left[\begin{array}{ccc}
1 & v & 0 \\
v & 1 & 0 \\
0 & 0 & \frac{1-v}{2}
\end{array}\right]
$$

Stiffness matrix

$$
\left[k^{e}\right]=\iiint_{V}[B]^{T}[D][B] d V
$$

Since in this case, the matrices $B$ and $D$ are constants and are independent of spatial coordinates, the thickness can be extracted to give,

$$
\begin{equation*}
\left[k^{e}\right]=[B]^{T}[D][B] t \iint_{A} d A=t A[B]^{T}[D][B] \tag{ix}
\end{equation*}
$$

Transformation?
In-plane

$$
[\lambda]=\left[\begin{array}{lll}
\underline{\lambda} & \underline{0} & \underline{0} \\
\underline{0} & \underline{\lambda} & \underline{0} \\
\underline{0} & \underline{0} & \underline{\lambda}
\end{array}\right]
$$

Stiffness matrix, load vector, displacements!
where

$$
\underline{\lambda}=\left[\begin{array}{cc}
\cos \theta & \sin \theta \\
-\sin \theta & \cos \theta
\end{array}\right] \quad \text { and, } \quad \underline{0}=\left[\begin{array}{ll}
0 & 0 \\
0 & 0
\end{array}\right]
$$

## CHARACTERISTICS

- displacement model should be continuous
- why is this a constant strain triangle?

PLATE BENDING

## PLATE BENDING BEHAVIOUR

- thickness is small as compared to other dimensions
- deflections are small
- mid-plane does not undergo in-plane deformation
- transverse shear deformation is zero



## FINITE ELEMENT ANALYSIS OF PLATE BENDING

- special elements - transverse deflection of middle surface only
- other elements - include transverse shear
- displacement model
- 'w' should be continuous
- derivative should be continuous
- for convergence, assumed displacement model will have constant curvature states


## TRIANGULAR PLATE BENDING ELEMENT

9 displacement degrees of freedom

Displacement model:
$w(x, y)=a_{1}+a_{2} x+a_{3} y+a_{4} x^{2}+a_{5} x y+a_{6} y^{2}+a_{y} x^{3}+a_{8}\left(x^{2} y+x y^{2}\right)+a_{9} y^{3}$

The same process is followed
Differences?
$B$ matrix is a function of $x, y$ and $z$ !
thickness $t$ cannot be assumed to be constant, so integral must be used

Transformation matrix will be $9 \times 9$

$$
q_{2}=\frac{\partial w}{\partial y}\left(x_{1}, y_{1}\right)=Q_{3 i-1} q_{3}=-\frac{\partial w}{\partial x}\left(x_{1}, y_{1}\right)=Q_{3 i}
$$

## HOMEWORK

- Check blackboard for practice problems on membrane and bending plates
- Answer Self-Check questions and discuss on the forum
- Continue working on Homework assignment 2.


## NEXT WEEK...

- Post processing
- Convergence
- Strain energy error


[^0]:    者

