
LINEAR MODELLING (INCL. FEM) 

AE4ASM003 

P1-2015 

 

LECTURE 6 

06.10.2015 

1 



TODAY… 

• Post-processing 

• Convergence 

• Strain energy error 
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NUMERICAL INTEGRATION BY GAUSS RULES 
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GAUSS INTEGRATION 
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Partial evaluation of integrals over isoparametric elements 

• gauss integration 

• minimal number of sample points 

• high level of accuracy 

• higher computational efficiency 



GAUSS INTEGRATION 
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One-dimensional rule 

• w are the integration weights 

• p is the number of gauss points 

• transformation can be easily done using the Jacobian 

Two-dimensional rule 

each integral is processed numerically to give: 
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Stiffness matrix definition 

We can also represent it as 

where 

This can be easily solved using a Gauss rule! 



POST PROCESSING 
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POST PROCESSING 
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Displacement - direct results 

• processing! 

• calculated at nodes 

• high accuracy 

Strain and Stresses - derived results 

• post processing! 

• calculated at nodes or gauss points 

• lower accuracy than direct results 



STRESS CALCULATION 

• at element nodal points 

• corners 

• mid-points 

• stresses do not have to be continuous across elements 

• nodal points shared between two elements 

• not the same stress 

• so, stresses need to be averaged! 

• these are nodal point stresses 
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STRESS CALCULATION 

• two ways of calculating average nodal point stresses 

• substitution of natural coordinates into strain, stress relations 

• stress evaluation at gauss integration points 

✤ element stiffness integration rule 

✤ extrapolate to the element node points 

• second method is better… 
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STRESS CALCULATION 

• direct stress evaluation at nodes 

• extrapolation of gauss points 
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INTERELEMENT AVERAGING 

• unweighted 

• weighted 
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CONVERGENCE 
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CONVERGENCE REQUIREMENTS 

• Completeness 

• approximation power 

• Compatibility 

• displacement continuity 

• Stability 

• non physical zero energy modes 

• no excessive distortion 

• … 
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DISCUSSION WITH EXAMPLE 

• Beam problem from the practical assignment 

• Whats important? 

• location of nodes 

• type of element 

• number of elements 

• directional mesh biasing 

• … 
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STRAIN ENERGY ERROR 

16 



DISCUSSION WITH EXAMPLE 

• Beam problem from the practical assignment 

• Whats important? 

• location of nodes 

• type of element 

• number of elements 

• directional mesh biasing 

• … 
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PROOF OF CONVERGENCE 

• measurement of quality 

• comparison between fem and exact solution 

• discretisation error reduced to minimum 
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exact strain energy of the body 

fe strain energy of the body (with element size h) 
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EXAMPLE 

• Linear elastic bar 
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Boundary conditions 

Analytical solution 
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If we discretize the problem using a single linear finite element, the stiffness matrix is 
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The strain energy of the FE system is 
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Exact strain energy 

where 



convergence in strain energy 

convergence in displacement 

convergence rate 

• measure of discretization error tending to zero 

• dependent on the order of polynomial assumed as displacement model 
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HOMEWORK 

• Check blackboard for practice problems 

• Start working on Homework assignment 3. 
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NEXT WEEK… 

• Quadrilateral elements 

23 


