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TODAY…

• Quadrilateral Elements 
• Bilinear 
• Quadratic 
• Isoparametric formulation

2



QUAD ELEMENTS
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BI-LINEAR QUAD ELEMENTS
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Also called, Q4 element, has four nodes, and eight nodal d.o.f
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The linear displacement model is given as:

(1)

The elemental strain field can be found out to be:

(2)

Bilinearity is due to the displacement function

 being a product of two linear functions!!



5

* Lagrange’s interpolation formula

uses only ordinates in fitting a curve
shape function is given as

or,

And in general,

* terms in [ ] are omitted

(3)
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Using the Lagrange interpolation formula, lets interpolate linearly along the top and bottom side along x
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(4)

(6)

(5)

and, now in y between the above two displacements

Substituting 4 and 5 into 6, we can arrive at:

(7)

where,

and,

; ;

;



(8)

(9)
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as we know, the complete element displacement field is represented as
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and, elemental strains in terms of nodal d.o.f. are:

[B]
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What are the limitations of a bilinear quad?
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In pure bending, a block of material has strains given as

(10)

A Q4 shows strains as

(11)

Spurious shear strain = Parasitic shear
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Let us assume that the block and the element include the same angle,
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If the element aspect ratio increases infinitely, so does M2

then, it can be shown that,

(12)

If more moment is required to deform it, its artificially overly stiff in bending

This phenomenon is called Shear Locking

does a FE program “lock” the elements? —NO

• overly stiff

• lower deflections

• lower axial stresses

• higher error on transverse shear

Can we avoid it?

Yes! - meshing? element types?
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Improved bi-linear quadrilateral (Q6)
Six shape functions

(13)

(14)

where

• can model bending

• shear strain is negligible

• element must be rectangular
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Limitations?

• gi are internal d.o.f

• internal d.o.f are incompatible with adjacent element corresponding d.o.f.

• certain loading cases cause gaps or overlaps

So why use them? 
• sufficient mesh refinement leads to state of constant strain

• element edges become straight



QUADRATIC QUAD ELEMENTS
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Also called, Q8/Q9 element, has eight/nine nodes, and sixteen/eighteen nodal d.o.f

The quadratic displacement model is given as:

(15)

Serendipity elements!

Advantages 
• no parasitic shear

• requires less mesh refinement

• faster convergence

Adding one node at x=0, y=0 location, gives a Q9 element
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Displacement modes: 
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Recap:

• Lagrange interpolation formula can be used to represent shape functions

• Quads (Q4,Q8,Q9) described are also called Lagrange elements

• Q9 performs better than Q8 performs better than Q4 in pure bending

• The choice is based on the problem at hand

• All elements shapes must be rectangular!



ISOPARAMETRIC FORMULATION OF QUADS
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This formulation rids us of the restriction of using exclusively rectangular elements
* Shear locking behaviour is not avoided!

Some important facts and assumptions:

• the displacement field and the geometry definition are identical

• transformation from cartesian coordinate system to a generalised coordinate system is carried out

• the new coordinate system need not be orthogonal or parallel to the cartesian coordinates

• element sides are bisected by axes r and s

• r = ±1; s = ±1 (vertices)

• (r = 0, s=0) represents the centre of the element

• after transformation the element is always square with two units long sides

• displacement d.o.f. are parallel to cartesian coordinates and not the generalised coordinates



16

x,u

y,v

u2

s

r

1

1 1

1

1 2

34

1

2

3

4

By nature of isoparametric formulation,

and,

(a)

(b)

where i = 1 to 4, and,

(c)

and, (d)
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Using the shape function definition from Lagrange formula,

and substituting,

and,

and,

; ;

;

;

;

As always, the strain displacement relations needs to be worked out to find matrix [B] to evaluate the stiffness matrix

• gradients are involved

• the partial gradient w.r.t x is not related by a constant to partial gradient of r or s in this case

• a transformation matrix therefore, needs to be worked out

(e)
;
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Transformation matrix (Jacobian)

The differentiable function, in this displacement and geometry, is a function of r and s

so, we begin with a derivative w.r.t. r and s

(f)

(g)

Assembling in matrix notation,

(h)
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working out the partial derivatives and substituting into (h)

As you might remember, stiffness matrix in the isoparametric formulation is given by

where,

* in general, jacobian determinant is a function of generalised coordinates,
* for rectangles and parallelograms, it turns out to be quarter of the area of the “physical” element

(j)

(k)

(i)



LOOSE ENDS…

• Strain energy errors 
• choice of integration order
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STRAIN ENERGY ERROR *FROM WEEK 6
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DISCUSSION WITH EXAMPLE

• Beam problem from the practical assignment 
• What’s important? 

• location of nodes 
• type of element 
• number of elements 
• directional mesh biasing 
• …
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PROOF OF CONVERGENCE

• measurement of quality 
• comparison between fem and exact solution 
• discretisation error reduced to minimum
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exact strain energy of the body

fe strain energy of the body (with element size h)

U =
1
2

σ Tε dV
V∫

Uh =
1
2

σ h
Tεh dVV∫



EXAMPLE

• Linear elastic bar
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If we discretize the problem using a single linear finite element, the stiffness matrix is
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The strain energy of the FE system is
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Exact strain energy

where



convergence in strain energy

convergence in displacement

convergence rate 
• measure of discretization error tending to zero 
• dependent on the order of polynomial assumed as displacement model

0→→ hasUU h

u− uh 0
≡ u-uh( )2 + v-vh( )2#

$
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&

V
∫ dV → 0 as h→ 0



CHOICE OF INTEGRATION ORDER
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You were introduced to integration techniques in the last weeks : Gauss integration

This technique is used to generate the stiffness matrix of an element

There has to be a number of “sampling” points in the element

higher the number of sampling points in the integration rule, accuracy of integration increases
but so does the computational time

What are the obvious choices?

Low: for lower computational effort 

High: better accuracy

lose some deformation modes

stiffening of higher-oder displacement modes

There is no direct answer. FE program chooses for you the best possible integration rule. 

If you impose one on it, be aware of the consequences thereof!



HOMEWORK
• Continue working on Homework assignment 3 
• Prepare for final practical assignment
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FINAL WRAP-UP
• A wrap-up mini lecture will be posted next week 
• Some additional material will also be posted for those who are curious 

• symmetry (as a consequence of your practical assignment results!) 
• dynamic fe (at request of some curious students)


