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Contents

• Nonlinear behavior

• Harmonics

• The Volterra Series

• L-N structured models

• Book: refer to parts from Chapter 4 of Westwick and Kearney 
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Nonlinear behavior

• Static nonlinearity
• ‘memory-less’ relationship between variables
• continuous, e.g. y = u2, y = eu

• discontinuous, e.g. y = y for y >= 0, otherwise y = 0
• e.g. stress-strain relationship (stiffness) of (bio-)materials
• polynomial description of variable

• Dynamic nonlinearity
• e.g. y(t) = u2(t) / (s + 1)
• continuous and discontinuous
• e.g. stiffness as part of the larger neuro-mechanical joint system
• polynomial description of dynamics
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Examples Nonlinear properties

• Passive ankle stiffness
• exponential stress-strain

of muscular tissues

• Passive ankle viscosity
• exponential increase in

viscosity, likely from fluid
displacement, stiction etc.

from Mirbagheri 2001
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Harmonics
• static nonlinearity can be described in the frequency domain using 

harmonics

• e.g. square function y = u2

• u = sin(wt) (fundamental frequency, 1st harmonic)
• y = sin2(wt) = 0.5 – 0.5cos(2wt)
• double frequency (2nd harmonic) in output (plus constant)

• each ‘theoretical’ static nonlinearity has its own (‘fingerprint’) 
harmonics
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Linear Convolution

• Additivity (superposition) holds:

• Homogeneity holds:
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Nonlinear convolution equation

• Example, 2nd order nonlinear system:

• What kind of system is this? Impulse response:

• Additivity and Homogeneity do not hold, e.g.:
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Volterra series

• q is the order of the nonlinearity

• q = 0, constant term independent of input

• q = 1

• Impulse response of first order (linear) system (if all higher order 
kernels are zero):
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General system impulse response

• Finite Volterra series: Q kernels
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Kernel Symmetry

• second order (q = 2) and higher kernels are diagonal symmetric:

• since interchanging indices is equal to interchanging the two 
copies inputs u(t - τ1) and u(t - τ2)

• diagonal describes components that are the power q of the input
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Block structures
• Volterra series represent a wide variety of systems

• However, expressions are cumbersome

• Use simple models consisting of linear and static nonlinearities in 
series => efficient descriptions of limited class of nonlinear 
systems, e.g.:

• Wiener: Linear (L) – Static Nonlinear (N)
• Hammerstein: N-L
• Other combinations
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Wiener Model

• nonlinearity:

• output:

• relation to Volterra kernels:
• 1-dimensional slice (parallel to axis of Volterra kernel) is proportional 

to h(τ)!, e.g. 
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Testing for Wiener Structure

scaled versions 
of each other 
=> Wiener 
Model

1st order kernel 2nd order kernel

slices of 2nd order kernel normalized slices
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Testing for Wiener Structure
slices of 2nd order kernels are not scaled versions of each other
=> this system can not be described properly by a Wiener model

slices of 2nd order kernel

normalized slices
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Hammerstein Model

• output:

• expanding input power series:

with             the Kronecker delta (multidimensional)

• Volterra kernels:
• nonzero only at diagonal where τ1 = τ2 = … = τq
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Test for Hammerstein Structure
• System with Hammerstein structure
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Other model combinations
• L-N-L Wiener-Hammerstein

• N-L-N

• see par. 4.3.3 and 4.4.4 in Westwick and Kearney
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Parallel Cascades
• Wiener and Hammerstein models are serial cascades

• Many system require parallel structures
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Example Structure: Impedance of 
the human ankle joint
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Summary
Current models can be grouped into three basic classes
• Parametric approaches (e.g. Physical ODEs)
• Cascade or block structured techniques (e.g. Hammerstein, Wiener, 

LNL structures)
• Nonparametric kernel or functional series approaches (e.g. Wiener and 

Volterra representations)

1. The parametric methods have the advantage of producing very 
accurate descriptions of system behavior but require considerable a 
priori knowledge about system structure and order.

2. The cascade and kernel approaches are less efficient but are attractive 
for the investigation of unknown systems because their success is not 
dependent upon a priori information.
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