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Introduction 

• In inland waterways ships may cause waves 

• primary wave 

• secondary waves 

• propeller wash 
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flow around fixed object & 
moving object in stagnant water 
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Phenomena 
around a moving 
ship in a 
waterway 
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Return current and primary wave 

Ship in Elbe river, courtesy prof. Erik 
Pasche, TU Hamburg 
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propeller wash 
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Definition in 1-d approach 
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limit speed 
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Maximum speed is reached when return flow becomes critical, 

i.e. when derivative of return flow to waterlevel becomes zero 

Combine this with Bernoulli: 
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limit speed a a function of blockage 
As/Ac 
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limit speed as a function of 
waterdepth and blockage 
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primary waves 
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waterlevel depression as a function of 
blockage 
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return flow velocity as function of 
blockage 
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deviation from the 1-d case 
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origin of diverging and transverse 
waves 
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secondary wave pattern 
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Kelvin wave  

Christian Eskelund US Navy  



June 3, 2012 18 

Kelvin Duck wave 

M.S.Cramer, Virginia Tech Duck Pond 
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secondary wave height 
measurements 
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example (1) 

Given: ship 10 m wide, draught 3 m 

 canal 40 m wide, 5 m deep 

Limit speed:   As/Ac = (10*3) / (40*5) = 0.15 fig 9.4 

Vl/gh = 0.55  Vl= 3.8 m/s    design speed 0.9*3.8=3.4 m/s 

Use fig. 9.6 z/h=0.083  z=0.42 m 

Ship sails 10 m from bank (y= 5 m), so 

zmax=1.5((1+2*5/40)*0.42 = 0.78 m 

ur = 0.15 *gh = 1.04 m   

incl. excentricity: (1+5/40)*1.04 = 1.17 m/s 

eq. 9.6 and 9.7 

H = 1.2 h(s/h)-0.33*v4/(gh)2 =  

                     1.2*5*(10/5)-0.33*3.44/(10*5)2 = 0.27 m 
eq. 9.8 
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standard values in the Netherlands 

 Wave heights (m) Currents (m/s) 

 Wind waves Ship waves Natural current Return current 

Lakes 
Canals 
Rivers 
Small waters 

0.25 – 1.00 
0.10 – 0.25 
0.25 – 1.00 
0.10 – 0.20 

0.10 – 0.50 
0.25 – 0.75 
0.25 – 0.75 

n.a. 

0.1 – 0.5 
0.5 – 1.0 
1.0 – 2.0 
0.2 – 1.0 

0.1 – 0.25 
0.5 – 1.0 
0.5 – 1.0 

n.a. 

 

Data from CUR 197 

“Breuksteen in de praktijk” 
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Propeller action 
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turbulence in propeller wash and in 
free circular jet 
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equations for propeller jets 
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velocity distribution in propeller wash 
and free jets 
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velocities behind propeller 
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see also section 2.4.2. 
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measured flow in a propeller jet 

data from thesis Schokkink, 2003 
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Turbulence in a propeller jet 

data from thesis Schokkink, 2003 
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Flow caused by a propeller on an 
inclined slope 

data from thesis Schokkink, 2003 
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erosion due to bowthrusters 

data from thesis Schokkink, 2003 
Plofsluis, Amsterdam Rijn kanaal 
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Ship engines 

 

Type of ship Power of 
engine 
(kW) 

Small ships 
Spits 
Kempenaar 
Dortmund-Ems Kanal 
Rhein-Herne Kanal 
Large Rhine vessel 
2 barge pushboat 

100 
200 
350 
500 
700 
1400 
1500 

 

power main propulsion system - resistance 

y = 0,661x

R2 = 0,5882

0

500

1000

1500

2000

2500

3000

0 1000 2000 3000 4000 5000

ship lenght*(2*draught+beam)

installed power 

Pmean=0.66L(2D+B) 
P10% =1.25 Pmean 

Data from Verheij (2010) 
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Simulation of a propeller jet 

Model by De Jong [2003], measurements by Schokking [2002] 
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Model simulation with Phoenicx 

Data from Van der Laan [2005] 
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The physical model 

Van der Laan [2005] 
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Mathematical vs. Physical model 
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Van der Laan [2005] 
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flow under ship 

Egbert van Blaaderen, 2006 
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Data of all inland vessels   -  Pmean=A1LD+A2 

power bow thruster - lateral resistance 
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Data from Verheij (2010) 
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stability of bed protection 

• important are: 

• return flow 

• stern wave (depression) 

• secondary waves 

• propeller wash 

• Relations based on Izbash + experimental data 

• Hartelkanaal tests provided good data 

• M1115  1980-1988 

• Q908 1990 

• Dipro 
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bow thrusters 
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Pd =  Power of engine 
L =  lenght of ship 

D  = draught of ship 
D0 =  diameter of propeller 
vp =  velocity behind thruster 
vb =  velocity near the bed 

 =  loss factor = 0.9 
zp =  distance propeller axis 

  and bottom of channel 
 
The axis of the thruster is Dp 
above the bed, but for  there 
is no default given.  
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stability (primary waves) 
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stability (secondary waves) 
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stability (propeller wash) 
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example (2) given: depression = 0.78 m 

 H = 0.27 ,   T = 1.8 s 

           ur = 1.17 m/s  tan=1/3 
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stern wave effect: 

return flow effect: 
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secondary wave effect: 
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example (3) 

• stern wave dominates problem 

• action of stern wave only at waterline 

• at deeper water return flow dominates 

• at more spacious water bodies secondary waves 
become dominant 
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example (4) 

Ship 10 m wide, d3 m draught, 1000 kW engine (1370 hp),  

propeller diameter 1.4 m, propeller 1.5 m above bed 
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Effective jet = 70% of real diameter, so d = 1 m 
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Optimal depth of a channel 

Dredge level 

Free channel 
depth 

2dn50 
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erosion 
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bed erosion due to propeller wash 
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Dipro - Cress 


