Dimensions

chapter 10

ct 4310 Bed, bank and shoreline protection

H.J. Verhagen

June 3, 2012

Faculty of Civil Engineering and Geosciences Section Hydraulic Engineering

Delft University of Technology

Introduction

- relation between strength and loads
- risk analysis
- ULS and SLS
- Maintenance strategies

June 3, 2012

failure, risk and costs

June 3, 2012

definitions of risk

- probability of an unwanted event
- consequences of an unwanted event
- the product of probability and consequences of the unwanted event
- the previous risk, but to the power N, in which N is the number of events per year

risk = probability * consequence

definitions of risk

- probability of an unwanted event
- consequences of an unwanted event
- the product of probability and consequences of the unwanted event
- the previous risk, but to the power N, in which N is the number of events per year

differences in structural behaviour

e

OpenCourseWare ocw.tudelft.nl

probabilistics

Z = Strength - Load

= R - S

 $= R(x_1, x_2, x_3, \dots, x_m) - S(x_{m+p}, \dots, x_n)$

June 3, 2012

probability mountain

Integral of the probability mountain

$$P_F = P(Z < 0) = \iint_{Z(x) < 0} \dots \int p_{\underline{x}}(x) dx_1 \dots dx_n$$

June 3, 2012

Levels of approach

- Level III
 Fully probabilistic approach
- Level II
 - approximate probabilistic approach
- Level I
 - quasi probabilistic approach
- Level 0

deterministic approach

Load and strength

In traditional design: strength > load
usually: strength = γ * load
in which: γ is safety factor

Probability of failure

•When you design your strength equal to your design load, then: prob. of fail = 50%

•So for small failure use higher strength

Load and strength distribution

In probabilistic design full load and strength distribution is used
the probability of failure can be quantified: It is the overlap of both curves

advantages

•A narrower distribution leads to to more safety, using the same average strength

example for the comparison

Deterministic approach

Available wave data: Ten years of observations, highest observation in 10 years is $H_s = 1.62$ m

$$d_{n50} = \frac{H_{sc}\xi^{0.5}}{\Delta 6.2P^{0.18} \left(\frac{S}{\sqrt{N}}\right)^{0.2}}$$

No swell, so s= 0.05 slope 1:4, so plunging P (revetment) = 0.1 $\Delta = 1.65$ N = 7000 S = 2

From computation follows $d_{n50} = 0.56 \rightarrow \text{rock } 300/1000 \text{ kg}$

probabilistic approach

Rewrite Van der Meer as:

$$Z = 6.2 P^{0.18} \left(\frac{S}{\sqrt{N}}\right)^{0.2} \xi^{-0.5} - \frac{H_{sc}}{\Delta d_{n50}}$$

parameter	Distribution	mean	σ
	type		
H _s	Weibull		
Δ	Normal		
D _{n50}	Normal		
S	Uniform		
Ν	Normal		
Р	Normal		
ξ	??		

June 3, 2012

wave climate to be used

Simulated distribution

$$H = \frac{-1}{\lambda} \ln(P) + \varepsilon$$

 $\varepsilon = 1.0$
 $\lambda = \frac{-\ln(P)}{h - \varepsilon} = \frac{-\ln(0.01)}{2.2 - 1} = \frac{4.605}{1.2} = 3.83$

June 3, 2012

full input table

$$Z = 6.2 P^{0.18} \left(\frac{S}{\sqrt{N}}\right)^{0.2} \left(\frac{\tan\alpha}{\sqrt{s}}\right)^{-0.5} - \frac{H_{sc}}{\Delta d_{n50}}$$

parameter	Distribution type	mean	σ	
H _s	Exponential	ε = 1	$\lambda = 3.83$	
ρ _s	Normal	2600	100	
Ρw	Normal	1030	5	
D _{n50}	Normal	0.6	0.05	
S	Determin.	2		
N	Determin.	7000		
Р	Lognormal	0.1	0.05	
S	Normal	0.05	0.01	
tan α	Normal	0.25	0.0125	
Cpl	Normal	6.2	0.43	

procedure of Monte Carlo

June 3, 2012

Results of Monte Carlo

Two realisations for S=2; NoOfSamples = 30000 and 300 pf = 0.1152 and pf = 0.1In FORM: pf = 0.098

June 3, 2012

Results of FORM (β = 1.29, pF = 0.098)

variable	α-value	Mean value	Design point
ρ _s	0.18	2650	2626
ρ _w	-0.02	1030	1030
tan α	-0.07	0.25	0.25
Steep	0.15	0.05	0.048
Р	0.25	0.1	0.076
S	0	2	2
Ν	0	7000	7000
H _s	-0.88	3.83	1.53
d _{n50}	0.25	0.6	0.58
Cpl	0.21	6.2	6.08

June 3, 2012

risk analysis

 P_f for S=2 (damage) = 0.09 P_f for S=10 (failure) = 0.011

There is 1% chance per year of total collapse of the building.

Lifetime of building is 50 years P_f in 50 years = 1-(1- P_f /year)⁵⁰ = 0.42

So there is 42% chance that the building will be destroyed during its lifetime

capitalised risk

$$R = \sum_{n=1}^{50} P_F D \frac{1}{(1+r)^{50}} = P_F D \frac{1 - \left(\frac{1}{1+r}\right)^{50}}{r}$$

D = total damage (suppose it is, including econ. activities 10 million € r
 = interest rate (assume 5%)
 For D (in case of full destruction of slope) assume 10 million €

The capitalised risk is $0.011 \cdot 10 \cdot 10^6 \cdot 18.25 = 2$ million \in .

Armour layer	d _{n50}	P _F per year	<i>P_F</i> per 50	Risk
(kg)	(m)	(-)	years (-)	(10 ⁶ €)
60 - 300	0.4	0.189	0.999	34.5
300 - 1000	0.6	0.011	0.42	2.0
1000 – 3000	0.85	0.001	0.049	0.18
3000 - 6000	1.1	0.00017	0.0085	0.03

construction costs

Armour layer (kg)	Cost per m ³ (€)	Volume (m ³)	Costs extra filter layer	Costs (incl. extra filter) (10 ⁶ €)	Total costs revetment (10 ⁶ €)
			(10° €)		
60 - 300	20	4000	0	0.08	1.08
300 - 1000	24	6000	0	0.14	1.14
1000 – 3000	30	9000	0.02	0.27	1.27
3000 – 6000	36	11500	0.02	0.42	1.42

The differences in costs are small !!

comparison construction costs and risk

June 3, 2012

conclusion

Heavy revetments are in this case the best conclusion.

But: in case of no (expensive) building, result will be completely different

June 3, 2012

basics of level II approach

$$\beta = \frac{\mu_Z}{\sigma_Z}$$

June 3, 2012

level I approach

partial safety coefficients:

$$\gamma_i = \frac{\mu_i - \alpha_i \beta \sigma_i}{\mu_i}$$

evaluation of risk analysis

approximation using Poisson equation:

 $P = 1 - \exp(-fT)$

in which:

- P probability of occurence of an event one or more times in period T
- T considered number of years
- f average frequency of the event per year

So: if a probability of failure during the lifetime (50 years) of the building should be 5 % then f has to be 1/1000.

 H_{s} 1/1000 is 2.8 m Acc, to VanderMeer D_{n50} = 0.7, i.e. 1000-3000 kg

Failure based maintenance

Time-, use-, or load-based maintenance

state based maintenance

choice of a maintenance policy

Example of probabilistic maintenance

Outlet sluice: h ⊁ п hs In case $h_s > 8m$ 1:6 emergency operation is needed How frequently is sounding needed ?? Scouring function: $h_s(t) = \frac{\left(\alpha \,\overline{u} - \overline{u}_c\right)^{1.7} h_0^{0.2}}{10 \, \Lambda^{0.7}} t^{0.4}$ $Z = h_{sc}(t) - \frac{\left(\alpha \,\overline{u} - \overline{u}_{c}\right)^{1.7} h_{0}^{0.2}}{10 \,\Lambda^{0.7}} t^{0.4}$ Z-function:

Parameter	α	U	Uc	h ₀	Δ	h _{sc}
Mean (µ)	2.5	1 m/s	0.5 m/s	10 m	1.65	8
Deviation (σ)	1	0.1 m/s	0.05 m/s	0.25 m	0.05	2

June 3, 2012

failure probability of a scour hole

Deterministic calculation with two values for α Assume α =2.5 then h_s = 8m after 95 days

Probabilistic calculation: 50% probability that $h_s = 8m$ after 95 days 20% probability that $h_s = 8m$ after 20 days 5% probability that $h_s = 8m$ after 5 days

June 3, 2012

series and parallel systems

fault trees

fault tree of a revetment

Resilient strength

Failure of revetment + failure of sublayer failure of core = failure of dike

Resilient strength

collapse due to wave overtopping

June 3, 2012

collapse due to toe erosion

collapse due to micro-instability

June 3, 2012

appendix Probabilistic approach level II

June 3, 2012

TUDelft OpenCourseWare ocw.tudelft.nl

Delft University of Technology

top view of probability mountain

June 3, 2012

3-d view of z function

3-d view of probability mountain

exponential distribution and substitute normal distribution

