Satellite Navigation Integrity and integer ambiguity resolution

AE4E08

Sandra Verhagen

Course 2010 – 2011, lecture 12

1

Satellite Navigation (AE4E08) - Lecture 12

Today's topics

- Integrity and RAIM
- Integer Ambiguity Resolution

• Study Section 7.4 – 7.6 (not LMS algorithm in 7.5.3)

Integrity: performance measures

Integrity = ability of a system to provide timely warnings to users when the system should not be used

- HPF/VPF : Horizontal/Vertical Position Error (not known; due to measurement noise and biases)
- HPI /VPI : Horizontal/Vertical Protection Level horizontal/vertical position is assured to be within region defined by HPL/VPL
- : Horizontal/Vertical Alarm Limit HAL/VAL position error that should result in an alarm being raised
- TTA

: Time To Alarm

time between occurrence of integrity event (position error too large) and alarm being raised

Integrity: performance measures

- HPE/VPE : Horizontal/Vertical Position Error (not known; due to measurement noise and biases)
- HPL/VPL : Horizontal/Vertical Protection Level horizontal/vertical position is assured to be within region defined by HPL/VPL (can be calculated)
- HAL/VAL : Horizontal/Vertical Alarm Limit
 position error that should result in an alarm being raised

required: P(XPE > XPL) < integrity risk $V(XPL > XAL \rightarrow \text{ alarm, system unavailable}$

Stanford plots http://waas.stanford.edu/metrics.html

GPS PRN 23 Anomaly, 1 Jan, 2004

Not noticed by US for 3 hours Picked up by EGNOS Alternative: check @receiver

Receiver Autonomous Integrity monitoring

RAIM - Overall model test

RAIM: detect and correct for errors in GPS data @receiver

Overall model test: does H_o provide good model?

Model:
Measurements:

$$y \rightarrow \hat{x} = \left(A^{T}Q_{yy}^{-1}A\right)^{-1}A^{T}Q_{yy}^{-1}y$$

$$\hat{y} = A\hat{x}$$
Residuals:

$$\hat{e} = y - \hat{y}$$
"Mismatch":

$$\underline{T}_{q=m-n} = \underline{\hat{e}}_{o}^{T}Q_{yy}^{-1}\underline{\hat{e}}_{o}$$

RAIM - Overall model test

RAIM: detect and correct for errors in GPS data @receiver

Overall model test: does H_o provide good model?

$$\underline{T}_{q=m-n} = \underline{\hat{e}}_o^T Q_{yy}^{-1} \underline{\hat{e}}_o$$

$$H_o: \underline{T}_q \sim \chi^2(m-n,0)$$

 $H_a: y \in \mathbb{R}^m$

A Simple Ambiguity Resolution Example

Model:
$$E\begin{pmatrix} \varphi \\ p \end{pmatrix} = \begin{pmatrix} 1 & -\lambda \\ 1 & 0 \end{pmatrix}\begin{pmatrix} \rho \\ a \end{pmatrix}, \quad D\begin{pmatrix} \varphi \\ p \end{pmatrix} = \begin{pmatrix} \sigma_{\varphi}^2 & 0 \\ 0 & \sigma_p^2 \end{pmatrix}, \quad a = \text{integer}$$

Satellite Navigation (AE4E08) - Lecture 12

Relative Positioning: Double Differencing

- elimination of receiver clock errors
- elimination of initial receiver phase offsets
- DD phase ambiguity is an integer number!

DD code observation:

$$\rho_{ur,i}^{(kl)} = \left(-\mathbf{1}_{r}^{(kl)}\right)^{T} \mathbf{x}_{ur} + \mu_{i} I_{ur}^{(kl)} + T_{ur}^{(kl)} + \varepsilon_{\rho_{i},ur}^{(kl)}$$

DD phase observation:

 X_{ur}

Resolution of the DD ambiguities

- code observation: **dm** precision
- phase observation: **mm** precision,
 - but: receiver-satellite geometry has to change considerably (long observation time) to solve position with mm-cm accuracy
 - if DD ambiguities are resolved to integers within a short time (or instantaneously), positions (and other parameters) can be solved with mm-cm accuracy

Precision code vs. phase observations

code observations

phase observations

- both RELATIVE positioning
- phase: provided that the integer ambiguity is KNOWN

Ionosphere-fixed, -float, -weighted model

• Ionosphere-fixed model:

- **no** differential ionospheric delay parameters
- observations may be **corrected** a priori for ionosphere
- for **short** baselines only
- can already be based on **single-frequency** data
- Ionosphere-float model:
 - estimation of differential ionospheric delays
 - no a priori corrections
 - for long baselines
 - based on at least dual-frequency data
- Ionosphere-weighted model:
 - ionosphere corrections from network RTK 'subtracted'
 - for medium to long baselines

GNSS model

In book: $y = AN + G\delta x + \varepsilon$

Observation equations:

$$\mathbf{y} = \mathbf{A}\mathbf{a} + \mathbf{B}\mathbf{b} + \mathbf{e}, \quad \mathbf{a} \in \mathbb{Z}^n; \qquad \mathbf{Q}_{yy}$$

- y data vector
- a ambiguities
- **b** baseline coordinates & other unknowns
- $\boldsymbol{Q}_{\!_{\! W\!\!}}$ variance-covariance matrix of data

SUCCESSFUL INTEGER AMBIGUITY RESOLUTION

is the key to

FAST and PRECISE GNSS parameter estimation

(baseline coordinates, attitude angles, orbit parameters, atmospheric delays)

Satellite Navigation (AE4E08) – Lecture 12

Integer estimation

Satellite Navigation (AE4E08) - Lecture 12

Float and fixed solution

Ambiguities not fixed

Ambiguities fixed

Satellite Navigation (AE4E08) - Lecture 12

Integer estimation

integer map
$$\hat{\mathbf{a}} \in \mathbb{R}^n o S(\hat{\mathbf{a}}) = \widecheck{\mathbf{a}} \in \mathbb{Z}^n$$

no holes & no overlap → there will always be <u>ONE</u> solution

translation invariant

Different choices of integer estimators

after their pull-in region

Ambiguity resolution

Integer ambiguities are derived from stochastic observations

Integer ambiguities are **not deterministic** but *stochastic*

input (stochastic)

$$\hat{\mathbf{a}} \in \mathbb{R}^n \to S(\hat{\mathbf{a}}) = \breve{\mathbf{a}} \in \mathbb{Z}^n$$

 \downarrow
output (stochastic)

Integer estimation

Optimal integer estimator: integer least-squares

$$\mathbf{\breve{a}} = \arg\min_{\mathbf{z}\in\mathbb{Z}^n} \left\|\mathbf{\hat{a}} - \mathbf{z}\right\|_{\mathbf{Q}_{\hat{\mathbf{a}}\hat{\mathbf{a}}}}^2$$

Satellite Navigation (AE4E08) - Lecture 12

Ambiguity search space: a (hyper-) ellipsoid

- centered at $\hat{\mathbf{a}}$
- shape governed by $Q_{\hat{a}\hat{a}}$
- find all integers z for which

$$(\hat{\mathbf{a}} - \mathbf{z})^T \mathbf{Q}_{\hat{\mathbf{a}}\hat{\mathbf{a}}}^{-1} (\hat{\mathbf{a}} - \mathbf{z}) \leq \chi^2$$

- χ^2 should be set such that search space contains at least **one** integer vector
- select the \mathbf{z} which provides minimum

- + \hat{a}_1, \hat{a}_2 (float solution)
- candidate integer solution

Integer ambiguity resolution

- Float solution: least-squares
- Integer search: find integer solution with shortest weighted distance to float solution (weighted by variancecovariance matrix of float ambiguites)
- Search difficult due to correlations
- LAMBDA: transformation of search space to make it efficient

Example: Ambiguity search space Two dimensions, geometry-free, short baseline

After decorrelation

Number of candidates INSIDE search space is same

→ Search is efficient

Ambiguity estimation and success rate Example based on real data (1000 epochs)

Distribution of original ambiguities

Distribution of transformed ambiguities

Integer ambiguity resolution

Successful ambiguity resolution depends on precision of float solution, which depends on:

- baseline length (tropo + iono delays)
- satellite geometry
- precision of code and phase observations
- *#* frequencies
- \rightarrow Change in satellite geometry helps (long duration)

LAMBDA method

Integer estimation:

- optimal : maximum success rate
- efficient : (near) real-time

Applicable to wide variety of models

- With or without relative satellite-receiver geometry
- Stationary or moving receivers
- With or without atmospheric delays
- Single- or multi-baseline
- One, two, three or more frequencies (any GNSS)

- LAMBDA

LAMBDA

Baseline models

Parameters

	Geometry- free	Roving- receiver	Stationary- receiver
Ranges	Ν		
Station coordinates		Ν	С
Ambiguities	С	С	С
Ionospheric delays	$N^{*)}$	$N^{*)}$	$N^{*)}$

- N New parameter introduced for each observation epoch
- C Constant parameter for entire observation period
- *) Long baselines only

Ambiguity Resolution Methods

- Search in the 3-dimensional position space (e.g. ambiguity function method); *Now deprecated*
- Linear combination of code and phase (using widelane/narrowlane combinations)
 - performance worse with AS
 - has been <u>improved by LAMBDA</u>: 2-dimensional ambiguity resolution/search problem

→ Geometry-free model

• Search in the *n*-dimensional ambiguity space

→ Geometry-based model

Summary and outlook

• We covered it all! (except for the applications)

Next: Applications: your presentations

Exam preparation: check blackboard!

