BIOMEDICAL ENGINEERING DESIGN

WB2308

TUDelft

Delft University of Technology

- CONCEPTUAL
- REPORT
- PRESENTATION

CONCEPTUAL PHASE:

- PROBLEM DEFINITION
- SEARCH FOR SOLUTIONS
- CHOICES

PROBLEM ANALYSIS:

- NOVEMBER 16, 2007; 08.45 hr.
- ROOM E

REPORT:

- ACCOUNT
- BRIEF: 10 12 PAGES

FINAL PRESENTATION:

- DECEMBER 21, 2007; 08.45 hr.
- ROOM E
- 10 MINUTES

SUPERVISION:

GABRIËLLE TUIJTHOF tel.: 86780 e-mail: g.j.m.tuijthof@tudelft.nl JUST HERDER tel.: 84713 e-mail: j.l.herder@wbmt.tudelft.nl DICK PLETTENBURG tel.: 85615 e-mail: d.h.plettenburg@wbmt.tudelft.nl

ASSIGNMENTS:

- REFILL UNIT CO2
- WRIST PROSTHESIS
- COUPLING MECHANISM ELBOW CONTROL
- GLOVELESS VC HAND PROSTHESES
- SHOULDER HARNESS BRASSIERE COMBI
- HAND GRIP
- SHOPPING CART
- SIMPLE ARMON
- MOBILE HEAD SUPPORT
- HAND PALM
- SIT-TO-STAND AID
- KNEE HOLDER FOR KNEE ARTHROSCOPY
- SHOULDER DISTRACTOR
- FOOT DISTRACTOR
- CORRECTION OSTEOTOMY
- SCREW FIXATION

REFILL UNIT CO₂

• Design a CO₂-cartridge that can be safely refilled

WRIST PROSTHESIS

• Design a wrist prosthesis with small axial length

COUPLING MECHANISM ELBOW CONTROL

 Design a mechanism that allows decoupling of elbow movements and hand movements

GLOVELESS HAND PROSTHESIS

• Design a gloveless hand with a high cosmetic value

SHOULDER HARNESS – BRASSIERE COMBINATION

• Design a shoulder harness – bra combination

13

HAND GRIP

• Design an a

r in beds

SHOPPING CART

• Design a shopping cart with integrated seat

MOBILE HEAD SUPPORT

• Design a compensation system for support of the head that provides a reasonable range of motion.

HAND PALM MECHANISM

• Design a mechanism that houses between three and five fingers and that distributes the operating force amongst the fingers.

SIMPLE ARMON

 Design an arm support device that is less complicated than ARMON, while providing reasonable range of motion.

SIT-TO-STAND AID

 Design a device that can help people getting up and sitting down. Consider the application of statically balanced spring mechanisms

KNEE HOLDER FOR KNEE ARTHROSCOPY

 Design a mechanism that compensates the mass of the lower leg, but still enables manipulation of the knee joint

SHOULDER DISTRACTOR

• Design a mechanism that enables manipulation of the shoulder joint and holds the joint in a desired position

FOOT DISTRACTOR

• Design a mechanism that enables distraction of the three main joints in the hindfoot/ankle joint

CORRECTION OSTEOTOMY

 Design a mechanism that enables precise sawing of the bones

SREW FIXATION

Design a mechanism that facilitates the placement of screws in bones

24

- TEAM UP: GROUPS of THREE
- INTERDISCIPLINARY [if possible]
- MAX. 2 GROUPS SAME ASSIGNMENT

