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Implementation of Composites in A/C 
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Review of Classical Laminated-Plate Theory

• In metals, we have plane stress, plane strain, 

generalized three-dimensional isotropic elasticity…

• In composites we still have plane stress, plane strain, 

generalized three-dimensional anisotropic elasticity…



Composites vs Metals (theoretical 

modeling)

• The main differences are:

– Elastic response:

• Isotropic materials need two elastic constants, any 

two of E, G, ν.

• Anisotropic materials need many more, as many 

as 21

• We will concentrate in a class of anisotropic 

materials called orthotropic for which four elastic 

constants are sufficient: Ex, Ey, Gxy, νxy



Composites vs Metals (theoretical 

modeling)

• The main differences are (cont’d):

– Failure:

• Unlike yielding in metals, which is well defined and 

relates to one phenomenon (plastic deformation) 

composites exhibit multiple failure modes which 

interact:

– matrix yielding

– matrix cracking

– delamination (separation of layers in a laminate)

– fiber cracking

– failure of fiber/matrix interface



Failure in composites

• different failures at different scales
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Orthotropic composite materials

• Composite: consisting of more than one constituents, 

e.g. fibers and matrix

• Orthotropic materials:  There are two planes of symmetry 

perpendicular to each other

Note: In a “real” composite, the 

symmetry may not be perfect.  It 

will also depend on how closely 

we zoom in



Modeling of composites

• Micromechanics: Model fiber and matrix separately

Fibers

Matrix
composite 

layer or ply



Modeling of composites

• “Meso-mechanics” (ply level)

– smear fiber and matrix properties to an equivalent orthotropic 

material 



The building block

• Stack plies (or laminae) of different orientations together 

to get a laminate

plies



General equations

• Constitutive relations for a single ply (stress-strain 

equations)

x and 1 parallel to the fibers in this case



Compare to…
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Simplification: “Thin” laminates

• If laminate is thin enough,

• Then,

eliminate all strains 

that have one “z”
subscript to obtain 

the 2-D stress-

strain equations



2-D stresses for single ply

• For a coordinate system with one axis aligned with the 

fibers

• or, using matrix notation:

xy

Qxx

Qxy

Qyy

Qss



Relation of elastic constants to 

engineering constants

• Standard engineering tests,

• It can be shown that:

EL, ET, GLT, νLT

engineering constants



Stress transformation
• What happens if the coordinate system does not have 

one axis aligned with the fibers?

• Recall that stress transforms according to:

• In an analogous fashion, stiffness transforms                 

according to

(2nd order tensor)

(4th order 

tensor)

w



Resulting in…

• For a ply of any orientation:
1

2

x

y

fibers

(1.1)

Note that if the fibers in a ply are not 

aligned with the coordinate system of 

interest, 12 in this case, Q16 and Q26

are different than zero!



From ply to laminate

• All this describes a single ply.  How do we go from ply 

stiffness to laminate stiffness?

• Recall cross-sections of multiple materials

• The equivalent stiffness (EA)eq is given as the sum of the 

individual (EA) values of the components

• This means that we can use the transformation 

equations to get the stiffness of each ply in the axis 

system of interest and multiply by the ply cross-sectional 

area:
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Stress resultants

• Before proceeding, it is convenient to invoke the fact that 

most laminates are very thin compared to their in-plane 

dimensions

• As a (good) approximation, one can average stresses 

over the laminate thickness

• Then, instead of stresses, which change from ply to ply, 

we work with stress resultants: Nx, Ny, Nxy,Mx, My, Mxy



Stress resultants

• Define force and moment resultants: Nx, Ny, Nxy,Mx, My, 

Mxy
(1.2)



Stress resultants

• This means that the force and moment resultants are 

forces and moments per unit width

• For example, for the case of uniaxial tension
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Membrane (in-plane) behavior

• Assume in-plane loads are applied, and laminate has no 

bending (=> symmetric layup)

• This means that the strains ε1, ε2, and γ12 are constant 

through the thickness and equal to the mid-plane strains, 

ε1o, ε2o, and γ12o

• Take eq. (1.1) and integrate with respect to z.  For 

example the first equation will be:
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Membrane (in-plane) behavior

• Similarly for the other two equations in (1.1).  Using 

matrix notation:

• where Aij is given by:

• and because Qij is constant within each ply, the integral 

can be substituted by a summation:
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where k denotes the kth ply, zo is at the bottom 

of the laminate and N is the total number of plies 

in the laminate

Note we are mixing 1,2 and 

x,y here indiscriminantly; (not 

a good idea but convenient) 

ply thickness

(1.3)


