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Review of Classical Laminated-Plate Theory

« In metals, we have plane stress, plane strain,
generalized three-dimensional isotropic elasticity...

* In composites we still have plane stress, plane strain,
generalized three-dimensional anisotropic elasticity...



Composites vs Metals (theoretical
modeling)

 The main differences are:

— Elastic response:

* |sotropic materials need two elastic constants, any
two of E, G, v.

 Anisotropic materials need many more, as many
as 21

« We will concentrate in a class of anisotropic
materials called orthotropic for which four elastic
constants are sufficient: E,, E,, Gy, V,,



Composites vs Metals (theoretical
modeling)

« The main differences are (cont’ d):

— Fallure:

 Unlike yielding in metals, which is well defined and

relates to one phenomenon (plastic deformation)
composites exhibit multiple failure modes which
Interact:

— matrix yielding

— matrix cracking

— delamination (separation of layers in a laminate)

— fiber cracking

— failure of fiber/matrix interface
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Orthotropic composite materials

« Composite: consisting of more than one constituents,
e.g. fibers and matrix

« Orthotropic materials: There are two planes of symmetry
perpendicular to each other

Note: In a “real” composite, the
symmetry may not be perfect. It
will also depend on how closely
we zoom in
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Modeling of composites

« Micromechanics: Model fiber and matrix separately

\

Fibers

Matrix _
composite

layer or ply




Modeling of composites

« “Meso-mechanics” (ply level)

— smear fiber and matrix properties to an equivalent orthotropic
material




The building block

« Stack plies (or laminae) of different orientations together
to get a laminate




General equations

« Constitutive relations for a single ply (stress-strain
equations)
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x and 1 parallel to the fibers in this case



Compare to...

o, = 1-v Eec, + v Ee. + Y Ec
X_(l+v)(1—2v) X (1+v)(l—2v) y (1+v)(1—2v) ’
1% 1-v 1%
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.. for metals



Simplification: “Thin” laminates

 If laminate Is thin enough,

e Then, o, = Epey + Epey + Ejze.

oy = Epex + Eney + Ene; . :
' ' eliminate all strains

‘ 144

0 = Epe, + Ene, + Exe, > that have one “z

0 = Exny: subscript to obtain
0= Essy,. the 2-D stress-
o strain equations
Ty = Eﬁﬁ}{‘t':



2-D stresses for single ply

« For a coordinate system with one axis aligned with the
fibers

it T ™ Xy
Qxx i 13\ | EHEEB i
o, =i| E11 — ex +i| E12 — £y
:\ 33 :\ Ezx )i
___________ EE TTTTTTERYD
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______

e 0r, using matrix notation:
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Relation of elastic constants to
engineering constants

« Standard engineering tests,

1
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J engineering constants
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Stress transformation

« What happens if the coordinate system does not have
one axis aligned with the fibers?

* Recall that stress transforms according to:

o1 cos? 6 sin® @ 2sinf cosH o 1

| | .
oy} = sin” 6 cos- @ —2sinf cos b o ‘\
T12

—sinf cosf  sinf cosf (COSEQ—SinH) Txy
* In an analogous fashion, stiffness transforms

(2nd order tensor) v

according to ¥
Qﬁ’ =m*Q., +n*0Q,, +2m’n*Q,, + 4m*n*Q,, |
|
Q%’ =n* Q. +m* Qyy + 2m*n* Q. + 4m*n* Qg
th
54 order Q[ﬁ’al = m?n? Q. + m*n*Qyy + (m* + n*) 0y — 4m*n? Qy,
ensor) . , ) 5
Where Qe = m*n*Qyr + m?n?Qyy — 2m*n* Q,y + (m* — n*)* Qy,
m = cos 6 Q[I%] = :r,'rNQ,H mn- Q,H + (mn® — m- n}Q“ 2(mn® —m- H]QH

and n = sin ¢ 0 X
Or =mn’Qyx — m3n Qyy + (m’n — mn’ ]IQ_;—_T +2(m’n — mn?) Oy,



Resulting in...

« For a ply of any orientation:

X
of On Q@ Qi €1 \
o ¢t =| Q12 On 0Ox ) (1.1)

T12 Oie Qs Oss Y12

—p
=

_ fibers

T

Note that if the fibers in a ply are not
aligned with the coordinate system of
interest, 12 in this case, Q.5 and Qg4 y

are different than zero!



From ply to laminate

All this describes a single ply. How do we go from ply
stiffness to laminate stiffness?

Recall cross-sections of multiple materials

The equivalent stiffness (EA),, Is given as the sum of the
iIndividual (EA) values of the components

This means that we can use the transformation
equations to get the stiffness of each ply in the axis
system of interest and multiply by the ply cross-sectional
area:

(EA)F"V i :(Qij )ply i Aply i

(EA)n = 2(EA),,

=(Q--) Oy t® is thickness of ply i and
1 ply i w is the width



Stress resultants

« Before proceeding, it is convenient to invoke the fact that
most laminates are very thin compared to their in-plane
dimensions

« As a (good) approximation, one can average stresses
over the laminate thickness

« Then, instead of stresses, which change from ply to ply,
we work with stress resultants: N,, Ny, Nxy,Mx, M,, M,



Stress resultants

* Define force and moment resultants: N,, N,, Nxy,Mx, M,,

Xy --f?j
N, = J o,dz (12)
N J_14
Y AZ Nx
Myy M N, = o,dz
Xy - L,I_'I_'
A
- 2
N, = J TdZ
h
) 7
Mx
Y M, = o,zdz
J_h
2
M, = oyzdz
Mxy ‘_J_f_ -
M y
y k
Mn — J T,n-EdE
e



Stress resultants

This means that the force and moment resultants are

forces and moments per unit width
« For example, for the case of uniaxial tension

w

A

"=

F, N

/F, N,

o - with o, the average
° wh applied stress

* But the average applied stress
IS, by definition:
o, =% J.z o, dz

—-h/2

* Using our definition of N,:




Membrane (in-plane) behavior

« Assume in-plane loads are applied, and laminate has no
bending (=> symmetric layup)

* This means that the strains ¢, €,, and y,, are constant
through the thickness and equal to the mid-plane strains,
E:10’ 820’ and V120

« Take eqg. (1.1) and integrate with respect to z. For
example the first equation will be:

h/2 h/2 h/2 h/2

j 0,0z = _[ Qu&,,dz + j Qpé,,0z + j Q6702 =

—h/2 —h/2 -h/2 —h/2

N, = { hjz Qlldz} Exo J{ hjz ledz} Eyo { hjz QlGdz} Y o

-h/2 -h/2 -h/2

— -
All

A12 A16



Membrane (in-plane) behavior

Similarly for the other two equations in (1.1). Using

matrix notation:

N, At
Ffs. — 51[2
Nlj‘ B A |6

where A; is given by:

Aj = _[ Qijdz

—h/2

A
A
Ay

& (1.3)

Note we are mixing 1,2 and
X,y here indiscriminantly; (not
a good idea but convenient)

and because Q; Is constant within each ply, the integral
can be substituted by a summation:

N

Aﬁj = Z(Qij )(k) (Zk - Zk—l)

ply thickness

where k denotes the kth ply, z, is at the bottom
of the laminate and N is the total number of plies
in the laminate



