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General Course Info

• Blackboard:
• Course schedule
• Announcements
• Lecture Notes
• Assignments + Final Assignment
• Chapters Reader
• Demonstration programs (Matlab)
• Matlab Command History (if applicable)

• 7 ECTS => 7 * 28 = 196 hours, for 14 lectures 
• Work-load => 14 hours/week !!!!!!



• Theory
• Book chapters (on Blackboard)

• Westwick & Kearney: Identification of Nonlinear Physiological Systems
• Pintelon & Schoukens: System identification

• Scientific Articles (on Blackboard)

• Regular Assignments
• Do it yourself. Basic Matlab experience helps !

• Final assignment
• Identification of a physical system from real experimental data (to be 

announced)
• Written report

• Written exam: register via TAS.tudelft.nl

http://www.tas.tudelft.nl/


Grading

• Final grade
• 20% average of class assignments
• 20% final assignment
• 60% written examination



Related Courses

Previous
• Wb 2207: Systeem- en Regeltechniek 2 (SR 2)

• Bode, Nyquist, Matlab

• Wb 2310: Systeem- en Regeltechniek 3 (SR 3)
• Fourier

=>Overview: A Student’s Guide to Classical Control, Bernstein 1997 (available 
on Blackboard)

Related
• SC4110: System identification (Bombois & van den Hof)

• (Linear) control theory



Aim of the Course

• Parameterization input-output behavior of unknown systems
• Non-parametric system representation
• Parametric representation: model structure, linear, nonlinear
• Estimation of model parameters
• Model validation

• Course end terms
• Intuition and understanding: Lectures
• Theoretical background: Reader
• Practical skills: Assignments



Course Contents

• System Identification
• signals, systems, models, estimators
• discrete and continuous domain, impulse response function
• frequency domain, multivariable systems
• time domain models, time-varying identification

• Parameter Estimation
• parameter search routines
• direct, indirect parameterization
• parameter accuracy, model validation
• parameterization of nonlinear models



Enjoy!



Signals

Systems are expressed by their observed signals

Signals domain: time, space, frequency
Signal range: meter, Newton, Voltage, etc…

E.g. s (t ) represents a mapping from the time domain 
set to a certain range set



Deterministic and Stochastic Signals

If future signal values are obtained from known 
equations, the signal is called deterministic.
E.g.:

If future signal values are random, the signal is called 
stochastic, or one realization from a stochastic process.

In reality, most signals fall between these two extremes.

( ) sin( )y t tω=



Probability Density Function

A stochastic process is described by its probability density function (PDF)

Statistical properties (e.g. mean, variance) of a random variable x are derived 
from the PDF, f (x ), by ensemble integrals:

-4 -2 0 2 40

0.2

0.4
P

ro
ba

bi
lit

y

Range

Gaussian

( )22

( )

( )

x

x x

xf x dx

x f x dx

μ

σ μ

∞

−∞

∞

−∞

=

= −

∫

∫



Stationary and Ergodic Signals

• for a random time signal, x (t ), the PDF is also time dependent: f (x, t )

• if the PDF is independent of time, i.e. f (x, t ) = f (x ), then the process is 
called stationary

• practical cases => PDF unknown => only finite time realizations => 
properties by time integrals:

• if ensemble and finite time integrals are equal, then process is called 
ergodic
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Systems and Models

• system N transforms input u (t ) to output y (t ):

• model M estimates system’s output (hat) from the 
input u (t ) and the model parameters θ :

( ) ( ( ))y t N u t=

ˆ( , ) ( , ( ))y t M u tθ θ=



Parametric and Nonparametric 
Models

• parametric models: few parameters, in many cases with a 
physical meaning. E.g. a spring (k) model:

• nonparametric models: many parameters with no physical 
meaning. Mappings from domain variable (time, frequency) to 
output values. E.g. the dots in the above figure.

ˆ( ) ( )y t ku t=
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Static and Dynamic Systems

• static system: output at one time instant depends only on the 
input at the same time instant. E.g. a full-wave rectifier:

• dynamic system: output depends on some or all of the input 
history. E.g. a time delay:

( ) ( )y t u t=

( ) ( )y t u t τ= −



Causality

• causal systems: output depends only on previous 
inputs (all physical systems)

• anti-causal systems: output depends only on future 
inputs

• noncausal systems: output depends both on previous 
and future inputs



Feedback mixes-up causality

• only u and y are available
• systems N1, N2, include time delays
• w1 arrives first at u, then at y (seems causal)
• w2 arrives first at y, then at u (seems anti-causal)
• while the total system is causal (from w1 to y), feedback let the 

relationship between u and y appear noncausal



Linear and Nonlinear Systems

• System:

• scaling property:

• superposition property:

• Systems that obey both scaling and superposition property are 
called linear. Otherwise, the system is nonlinear.

! In practice: linearity is approximate, depending on the range of
the input => systems operate in their ‘linear range’.
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( ) ( ( ))cy t N cu t=
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Time-Invariant and Time-Variant

• A system is time-invariant if its behavior does not depend on 
the passage of time:

• Systems that for which the above equation does not hold are 
called time-variant

( ) ( ( )) ( ) ( ( ))y t N u t y t N u tτ τ= => − = − τ∀ ∈ R



Deterministic and Stochastic Systems

• v (t ): additive noise, w (t ): process disturbance

• Deterministic system: w (t ) = 0

• Stochastic system: w (t ) ≠ 0

( ) ( ) ( ) ( ( ), ( )) ( )z t y t v t N u t w t v t= + = +



System Modeling from First Principles

• In many cases a mathematical model of a system can be constructed 
based on known physics (first principles). E.g. Hooke’s law for modeling 
of a spring:

y : spring reaction force, u : imposed displacement, k : spring constant

• In many cases, the spring constant is an unknown parameter and needs 
to be estimated experimentally.

• If the spring model does not predict well, additional terms are needed, 
such as damping and inertia. The system may even be nonlinear!

y ku= −



System Identification

• In many cases, however, first principles do not give the right 
initial lead.

• General mathematical models are required. E.g. ordinary 
differential equations (linear case):

• Problem: many parameters in a general model structure (linear, 
nonlinear, parametric, nonparametric) are irrelevant and may 
lead to undefined (bad convergence) parameter values.

• Identification goal: find the minimum order of the model.
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System Identification Problems

• Deterministic SYSID: find the relationship between u (t ) and
y (t ), assuming no process noise w (t )

• Stochastic SYSID: find the relationship between w (t ) and y (t ), 
based on assumed statistics of w (t )

• Complete SYSID: both deterministic and stochastic components, 
e.g. for precise output predictions.

• This course is dedicated to deterministic SYSID



The Art of System Identification

ˆ( , ) ( , ( ))y t M u tθ θ=

Find a model (M) having the least amount of parameters 
(θ ) providing an accurate description ŷ (θ,t ) of the 

system’s output y (t )



SYSID Applications

• Control: aim is to improve system performance

• Analysis: aim is to understand system functioning

• This course is dedicated to system analysis. Focus is 
on human physiological systems, in particular the 
neuromuscular system.



Nonlinearities

• Nonlinearities play a crucial role in SYSID

• Nonlinear functioning in the neuromuscular system:
• sensors: e.g. joint rotation is encoded and used by the nervous system to 

control muscle force. Sensors are directional and amplitude sensitive
• actuators (muscles): muscles only produce pulling forces and exhibit 

nonlinear force-length and force-velocity behavior
• tissues: visco-elasticity of binding tissue increases exponentially with stretch 

amplitude

• Linear models are valid in one point of operation but generally do not 
provide much insight in the functional organization of the system

• This course mainly discusses linear SYSID techniques and some nonlinear 
issues.



Measurement Setup

JointTorque
Angle

EMG

Parameters:
sensor gains

muscle visco-elasticity
tissue visco-elasticity

Robot




Gaussian Random Variables

• Noise is always present and approximately Gaussian:

• The PDF is fully determined by its mean μ and 
variance σ 2:

• with E[…] indicates the expectation.
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Linear Systems and Noise

• Filtering Gaussian noise by a linear system produces 
again Gaussian noise.

• Consequently, only the first two PDF moments (mean, 
variance) are required for linear SYSID



Correlation Functions

• Correlation functions reveal structures of signals that 
are not apparently detectable in the time series.

• Used to analyze relationships between signals, usually 
between inputs and outputs.

• Three types:
• Autocorrelation function
• Autocovariance function
• Autocorrelation coefficient



Autocorrelation Function

• Autocorrelation function:

• Maximal for τ = 0.

[ ]( ) ( ) ( )xx E x t x tτ τΦ = −



Autocovariance Function

• Autocovariance function:

• If μ = 0, then autocovariance and autocorrelation functions are 
identical

• At zero lag, 
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Autocorrelation coefficient

• Dividing the autocovariance by the variance gives the 
autocorrelation coefficient:

• The autocorrelation coefficient ranges from +1 (full 
positive correlation), to 0 (no correlation), to -1 full 
negative correlation).
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Book: Westwick & Kearney

• Chapter 1, all
• Chapter 2, sec. 2.1 – 2.3
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