Interaction of sound with the seafloor

July 4, 2010

1

Delft Institute of Earth Observation and Space Systems

Delft University of Technology

Reflection of sound at the seafloor Fluid-fluid interface

TUDelft

Reflection of sound at the seafloor effect of C₂

Reflection of sound at the seafloor effect of ρ_2

Reflection of sound at the seafloor Lossy reflecting medium

Make k_2 complex:

$$k_2 \rightarrow k_2 + i\alpha'_2$$

with

$$\alpha_2' = \frac{\alpha_2}{\lambda_2 \, 20^{10} \log e}$$

 α'_2 in m⁻¹ α_2 in dB/ λ

$$\operatorname{Im}(c_2) \approx \frac{c_2 \alpha_2}{40 \pi^{-10} \log e}$$

Exercise

Reflection of sound at unconsolidated sediments

Sediment type	Mz	n	ρ_2	<i>c</i> ₂	α_2	$c_{\mathrm{s},2}$	h
	(φ)		g/cm ³]	[m/s]	$[dB/\lambda]$	[m/s]	[cm]
Clay	9	0.80	1.2	1470	0.08	-	0.5
Silty clay	8	0.75	1.3	1485	0.10	-	0.5
Clayey silt	7	0.70	1.5	1515	0.15	125	0.6
Sand-silt-clay	6	0.65	1.6	1560	0.20	290	0.6
Sand-silt	5	0.60	1.7	1605	1.00	340	0.7
Silty sand	4	0.55	1.8	1650	1.10	390	0.7
Very fine sand	3	0.50	1.9	1680	1.00	410	1.0
Fine sand	2	0.45	1.95	1725	0.80	430	1.2
Coarse sand	1	0.40	2.0	1800	0.90	470	1.8

mean grain size M_z in phi units $M_z[\phi] = -^2 \log(d[mm])$ Density of the sediment

$$\rho_2 = n\rho_1 + (1-n)\rho_b$$

with *n* the porosity and $\rho_{\rm b}$ the bulk grain density (approx. 2.7 g/cm³).

Reflection of sound at unconsolidated sediments

Reflection of sound at the seafloor Elastic reflecting medium

Snell's law becomes

Reflection of sound at the seafloor Elastic reflecting medium, continued

total reflection

)elft

Reflection of sound at the seafloor Elastic reflecting medium, continued

Reflection of sound at the seafloor Elastic reflecting medium, continued

Reflection of sound at the seafloor Layered reflecting medium

Total reflection coefficient:

 $R = \frac{R_{12} + R_{23} e^{2i\varphi_2}}{1 + R_{12}R_{23} e^{2i\varphi_2}} \quad \text{with}$

$$\varphi_2 = k_2 h_2 \sin \theta_2$$

R is now frequency-dependent ! 12

Reflection of sound at the seafloor Layered reflecting medium, example

$$c_2 = 1600 \text{ m/s}, \ \rho_2 = 1.5, \ \alpha_2 = 0.2 \text{ dB}/\lambda, \ h_2 = 10 \text{ m}, \ c_3 = 2000 \text{ m/s}, \ \rho_3 = 1.5, \ \alpha_3 = 0.5 \text{ dB}/\lambda.$$

Exercise: calculate the critical angles corresponding to c_2 and c_3

Reflection of sound at the seafloor Layered reflecting medium, example

TUDelft

Scattering of sound at the seafloor Physics of scattering

Process depends on:

- frequency
 - angle of incidence
 - characteristics of relief

Directivity patterns as a function of

- seafloor roughness
- impedance contrast

Roughness in terms of the acoustic wavelength !

Intermezzo: the spatial roughness spectrum

$$S(\kappa) = S_0 \kappa^{-\gamma}$$
 with $\int S(\kappa) d\kappa = h^2$

with *h* the standard deviation of the relief amplitudes

Reflection revisited - Rayleigh parameter

Roughness in terms of the acoustic wavelength !

$$P = 2kh\sin\theta$$

Modify reflection coefficient

$$R_c(\theta) = R(\theta) e^{-P^2/2} = R(\theta) e^{-2k^2 h^2 \sin^2 \theta}$$

Scattering of sound at the seafloor backscattering strength

Scattering of sound at the seafloor Lambert's rule

 $S = 10^{10} \log \mu + 10^{10} \log(\sin^2 \theta)$

Scattering of sound at the seafloor Lambert's rule, continued

Scattering of sound at the seafloor Sophisticated backscattering strength models

- facet scattering near vertical incidence
 Bragg scattering (micro-roughness)
- volume scattering due to inhomogeneities in the sediment volume

21

ruDelft