Ray acoustics

Wave fronts and rays

Plane wave

Spherical wave homogenous medium

Spherical wave inhomogeneous medium

Refraction of a sound ray

Sound speed c varies linearly with depth z :
$c(z)=c_{0}+g z \Leftrightarrow \frac{d c}{d z}=g$
Snell's law:

$$
\frac{\cos \theta(z)}{c(z)}=\frac{\cos \theta_{0}}{c_{0}}=\frac{1}{c_{0}} \Leftrightarrow \frac{d c}{d z}=-c_{0} \sin \theta \frac{d \theta}{d z}
$$

$$
d z=\frac{-c_{0} \sin \theta}{g} d \theta
$$

Motion of a point mass on a circle

$\longrightarrow d z=R \sin \theta d \theta$

TUUDelft

Additional formulas

$$
\begin{gathered}
d z=R \sin \theta d \theta \\
d x=R \cos \theta d \theta \\
\Delta z=\int_{\theta_{2}}^{\theta_{3}} d z=\int_{\theta_{2}}^{\theta_{3}} R \sin \theta d \theta=R\left(\cos \theta_{2}-\cos \theta_{3}\right) \\
\Delta x=\int_{\theta_{2}}^{\theta_{3}} d x=\int_{\theta_{2}}^{\theta_{3}} R \cos \theta d \theta=R\left(\sin \theta_{3}-\sin \theta_{2}\right)
\end{gathered}
$$

Example: a ray calculation

TUUDeft
Ueft
Challenge the future

Example: calculate a second ray

(Propagation loss)
Launch angles:
$\theta_{0}=0^{\circ}$
$\theta_{0}=-4^{\circ}$

Example: ray tracing

Launch angles: $\theta_{0}=-10^{\circ} \rightarrow 10^{\circ}$

TUDelft

Propagation loss

In general:

$$
P L(r, z)=10^{10} \log \left(\frac{r \Delta h}{\Delta \theta}\right)
$$

Spherical spreading:
$P L=20^{10} \log r$ because $\Delta h=r \Delta \theta$

Case study 1: Deep water, negative g below sea surface

$$
H=4000 \mathrm{~m}, g=-0.05 \mathrm{~s}^{-1}, c_{0}=1500 \mathrm{~m} / \mathrm{s}, z_{0}=120 \mathrm{~m}
$$

Launch angles:
$\theta_{0}=-3^{\circ} \rightarrow 6^{\circ}$

$$
Z_{s}=R\left(1-\cos \theta_{m}\right)
$$

with

$$
R=-\frac{c\left(z_{s}\right)}{g \cos \theta_{m}}=-\frac{c_{0}}{g}
$$

Hence

$$
\theta_{m}=\arccos \left(1+\frac{z_{s} g}{c_{0}}\right)
$$

and

$$
x_{m}=2 R \sin \theta_{m}
$$

Technology
Challenge the future

Case study 1: Propagation loss

$$
\begin{array}{ll}
r<x_{m} & P L=60+20^{10} \log r+\alpha r \\
r>x_{m} & P L=60+20^{10} \log s+\alpha s+B L
\end{array}
$$

$$
s=2 \sqrt{\left(H-z_{s}\right)^{2}+\left(\frac{r}{2}\right)^{2}}
$$

Case study 1: Propagation loss, continued

$$
\begin{aligned}
& H=4000 \mathrm{~m} \\
& f=3000 \mathrm{~Hz} \\
& (\alpha=0.2 \mathrm{~dB} / \mathrm{km}) \\
& z_{\mathrm{s}}=z_{\mathrm{r}}=120 \mathrm{~m} \\
& B L=10.5 \mathrm{~dB} \text { (sand) }
\end{aligned}
$$

Case study 2: Sound channel propagation

TUDelf $=$
Challenge the future

Case study 2: Propagation loss

$$
\begin{array}{lll}
r<r_{0} & P L=20^{10} \log r+\alpha r & \text { 'Spherical' } \\
r>r_{0} & P L=10^{10} \log r_{0}+10^{10} \log r+\alpha r & \text { 'Cylindrical' }
\end{array}
$$

With $r_{o} \approx 4 \mathrm{~km}$ the transition range

Case study 2: Propagation loss, continued

$$
z_{\mathrm{s}}=z_{\mathrm{r}}=700 \mathrm{~m}
$$

TUDeltt

Case study 3: Refraction effect MBES

Radius of curvature of the ray launched at an angle θ_{0} :

Apply Snell's law for calculating θ_{1} :
$\cos \theta_{1}=\frac{c_{1}}{c_{0}} \cos \theta_{0}$

Horizontal range:
$x=R_{0}\left(\sin \theta_{1}-\sin \theta_{0}\right)$

Compare with horizontal range without refraction:

$$
x_{0}=\frac{H}{\tan \theta_{0}}
$$

Case study 3: Refraction effect MBES numerical example

θ_{0} [degrees]	θ_{1} [degrees]	$X_{0}[\mathrm{~m}]$	$X[\mathrm{~m}]$	Offset $x_{0}-x[\mathrm{~m}]$
45	45.2	100	99.7	0.3
20	20.5	274.7	270.9	3.8

$$
\begin{aligned}
& c_{0}=1500 \mathrm{~m} / \mathrm{s} \\
& H=100 \mathrm{~m} \\
& g=-0.05 \mathrm{~s}^{-1}
\end{aligned}
$$

Tuveit

THODeft Delft University
 Technology

TGUDeltt

