Ray acoustics

Wave fronts and rays

Plane wave

Spherical wave homogenous medium

Spherical wave inhomogeneous medium

Refraction of a sound ray

Sound speed c varies linearly with depth z:

$$c(z) = c_0 + g \ z \Leftrightarrow \frac{dc}{dz} = g$$

Snell's law:

$$\frac{\cos\theta(z)}{c(z)} = \frac{\cos\theta_0}{c_0} = \frac{1}{c_0} \Leftrightarrow \frac{dc}{dz} = -c_0 \sin\theta \frac{d\theta}{dz}$$

$$dz = \frac{-c_0 \sin \theta}{g} d\theta$$

Motion of a point mass on a circle

Additional formulas

 $dz = R\sin\theta d\theta$

 $dx = R\cos\theta d\theta$

$$\Delta z = \int_{\theta_2}^{\theta_3} dz = \int_{\theta_2}^{\theta_3} R \sin \theta \, d\theta = R \Big(\cos \theta_2 - \cos \theta_3 \Big)$$
$$\Delta x = \int_{\theta_2}^{\theta_3} dx = \int_{\theta_2}^{\theta_3} R \cos \theta \, d\theta = R \Big(\sin \theta_3 - \sin \theta_2 \Big)$$

Example: a ray calculation

 Delft
 Delft

 University of Technology
 Challenge the future

Example: calculate a second ray (Propagation loss)

Example: ray tracing

Propagation loss

Case study 1: Deep water, negative g below sea surface $H = 4000 \text{ m}, g = -0.05 \text{ s}^{-1}, c_0 = 1500 \text{ m/s}, z_0 = 120 \text{ m}$

Launch angles: $\theta_0 = -3^\circ \rightarrow 6^\circ$

Case study 1: Propagation loss

$$r < x_m \qquad PL = 60 + 20^{10} \log r + \alpha r$$

$$r > x_m$$
 $PL = 60 + 20^{10} \log s + \alpha s + BL$

$$s = 2\sqrt{\left(H - z_s\right)^2 + \left(\frac{r}{2}\right)^2}$$

Case study 1: Propagation loss, continued

University of Technology

Case study 2: Sound channel propagation

 Delft
 Delft

 University of Technology
 Challenge the future

Case study 2: Propagation loss

$$r < r_0 \qquad PL = 20^{10} \log r + \alpha r \qquad \text{`Spherical'}$$
$$r > r_0 \qquad PL = 10^{10} \log r_0 + 10^{10} \log r + \alpha r \qquad \text{`Cylindrical'}$$

With $r_0 \approx 4$ km the transition range

Case study 2: Propagation loss, continued

Case study 3: Refraction effect **MBES**

Radius of curvature of the ray launched at an angle θ_0 :

Apply Snell's law for calculating θ_1 :

$$\cos\theta_1 = \frac{c_1}{c_0}\cos\theta_0$$

Horizontal range: $x = R_0(\sin\theta_1 - \sin\theta_0)$

Compare with horizontal range without refraction:

$$x_0 = \frac{H}{\tan \theta_0}$$

University of

Case study 3: Refraction effect MBES numerical example

θ_0 [degrees]	θ_1 [degrees]	<i>X</i> ₀ [m]	<i>X</i> [m]	Offset x_0 - x [m]
45	45.2	100	99.7	0.3
20	20.5	274.7	270.9	3.8
		-		

 $c_0 = 1500 \text{ m/s}$ H = 100 m $g = -0.05 \text{ s}^{-1}$

Challenge the future

e the future

