Flow, Stability

chapter 3

ct4310 Bed, Bank and Shoreline protection

H.J. Verhagen

October 24, 2011

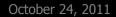
1

Faculty of Civil Engineering and Geosciences Section Hydraulic Engineering

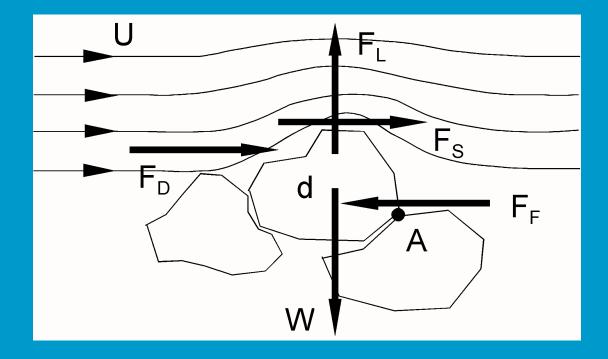
Delft University of Technology

Introduction

- focus on non-cohesive grains
- grains may vary in size from microns to tons
- basic principle not very different
- always turbulent



forces on a grain in flow

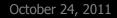


forces on a stone

Drag force:
$$F_D = \frac{1}{2} C_D \rho_w u^2 A_D$$

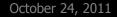
Shear force: $F_S = \frac{1}{2} C_F \rho_w u^2 A_S$
Lift force: $F_L = \frac{1}{2} C_L \rho_w u^2 A_L$

$$F \propto \rho_w u^2 d^2$$



load and strength relationship

$$u_c^2 \propto \left(\frac{\rho_s - \rho_w}{\rho_w}\right) g \, d = \Delta g \, d \longrightarrow u_c^2 = K \Delta g \, d$$

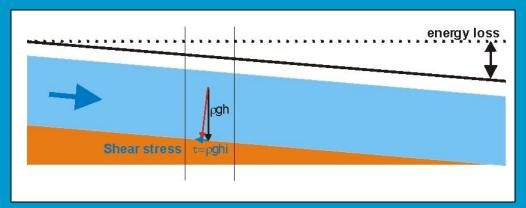


Izbash (1930)

$$u_c = 1.2 \sqrt{2 \Delta g d} \quad or \quad \frac{u_c}{\sqrt{\Delta g d}} = 1.7 \quad or \quad \Delta d = 0.7 \quad \frac{u_c^2}{2 g}$$

no waterdepth
no good definition of u_c and d

Approach of Shields (1936)



- Stability of stones depends on (generalized) friction force
- The force of flowing water on bed is: $F = Area * \rho ghi$ (or $\tau = \rho ghi$)
- Make stability number based on τ and d
- Make this number dimensionless by dividing by g and (ρ_s - ρ_w)
- So:

$$\psi_c = \frac{\tau_c}{\left(\rho_s - \rho_w\right)gd} = \frac{\rho_w ghi}{\left(\rho_s - \rho_w\right)gd}$$

No velocity in equation No need to measure velocity

Comparison of Shields and Izbash

- Both are formulas with stability as function of u²
- Izbash focuses on the force action on one single grain
- Shields focuses on the average shear stress on the bed
- Shields does not consider individual grains
- Izbash explicitly looks to individual rocks

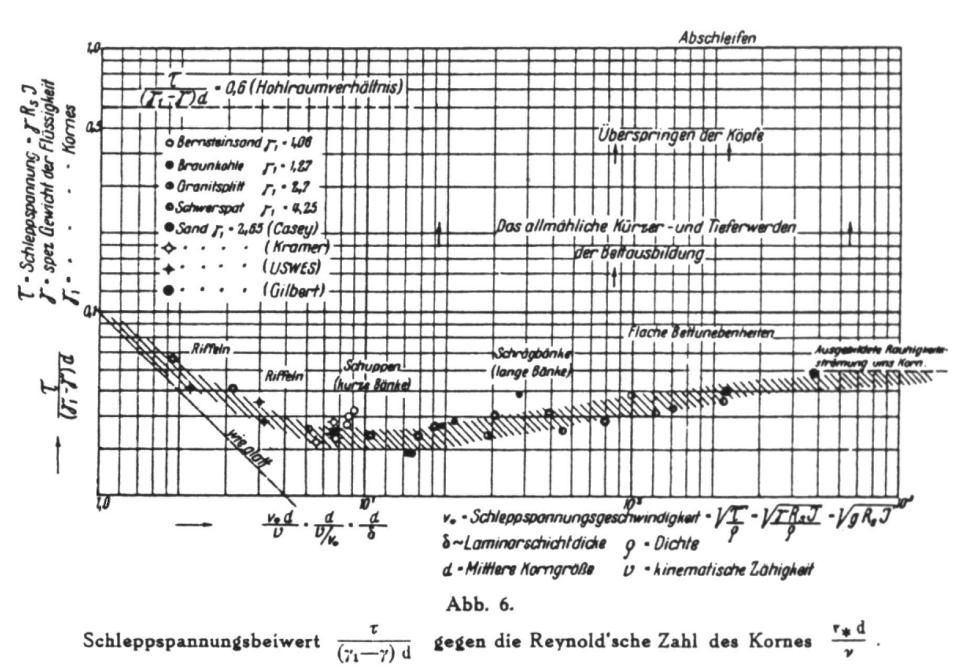
Shields (1936)

$$\psi_{c} = \frac{\tau_{c}}{\left(\rho_{s} - \rho_{w}\right)gd} = \frac{u_{*_{c}}^{2}}{\Delta gd} = f\left(\operatorname{Re}_{*}\right) = f\left(\frac{u_{*_{c}}d}{\upsilon}\right)$$

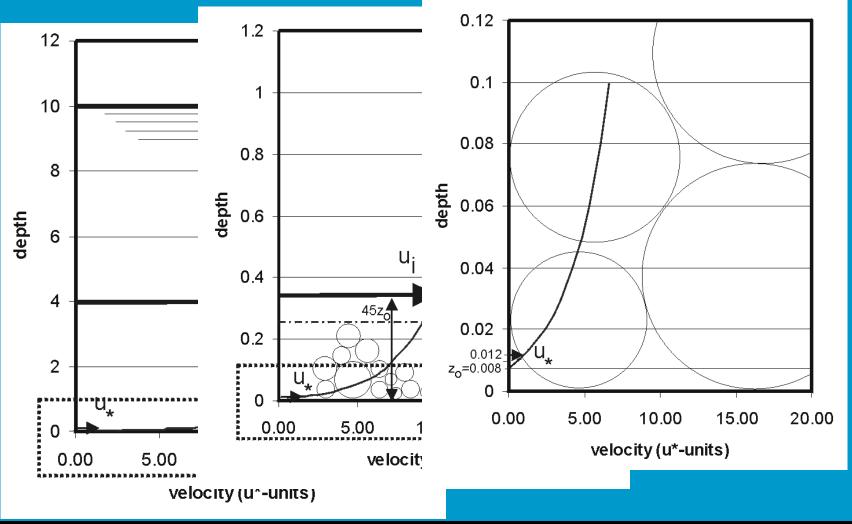
$$u_* = \overline{u} \frac{\sqrt{g}}{C}$$
$$= \frac{u}{C^2 \wedge d}$$

Only valid assuming the Chezy equation is valid

$$v = C\sqrt{hi}$$

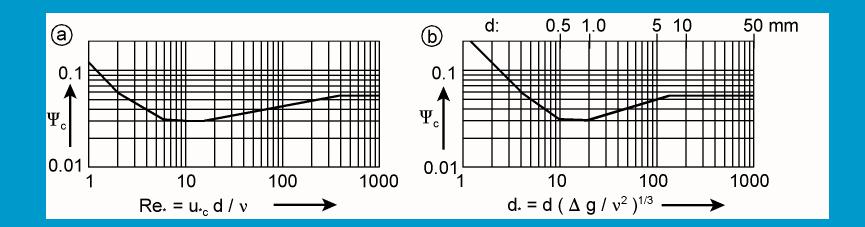


Velocity at a certain height



October 24, 2011

critical shear stress according to Shields Van Rijn

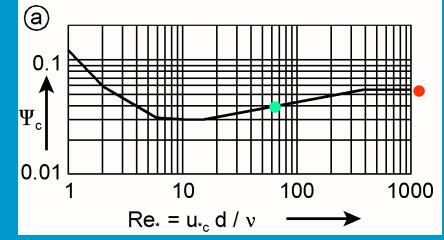


$$\psi_c = \frac{\tau_c}{\left(\rho_s - \rho_w\right) \ g \ d} = \frac{u_{*c}^2}{\Delta \ g \ d} = f\left(\operatorname{Re}_*\right) = f\left(\frac{u_{*c}}{\upsilon}\right)$$

Example for determination of d_{*} (Shields)

What is u_{*c} for sand of 2 mm?? Wild guess: u_{*c} is 1 m/s

$$\operatorname{Re}_{*} = \frac{u_{*c}d}{v} = \frac{1 \cdot 0.002}{1.33 * 10^{-6}} = 1500$$



$$\Psi_{c} = \frac{u_{*c}}{\Delta g d} \implies u_{*c} = \sqrt{\Psi_{c} \Delta g d}$$
$$= \sqrt{0.055 \cdot 1.65 \cdot 9.8 \cdot 0.002}$$

Thus: $\Psi_{c} = 0.055$

 $=0.042 \, m/s$

Thus:
$$\operatorname{Re}_{*} = \frac{0.042 \cdot 0.002}{1.33 * 10^{-6}} = 63 \implies \Psi_{c} = 0.04$$

 $u_{*c} = \Psi_c \Delta g d$ = 0.04 \cdot 1.65 \cdot 9.81 \cdot 0.002 = 0.036 m/s

October 24, 2011

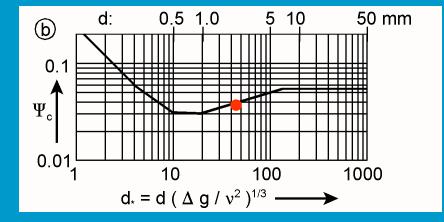
Example for determination of d_{*} (Van Rijn)

d = 2 mm

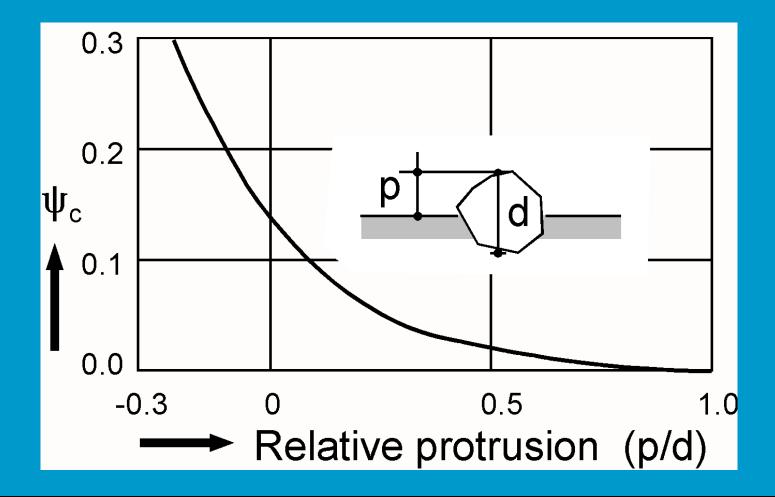
$$d_* = d \sqrt[3]{\frac{\Delta g}{\nu^2}} = 0.002 \cdot \sqrt[3]{\frac{1.65 \cdot 9.81}{\left(1.33 \cdot 10^{-6}\right)^2}} = 42$$

 $\Psi_{c} = 0.04$

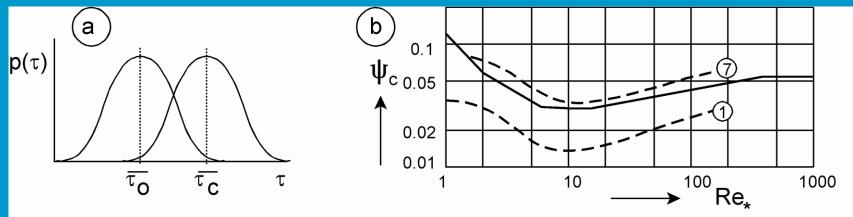
 $u_{*c} = \Psi_c \Delta g d$ = 0.04 \cdot 1.65 \cdot 9.81 \cdot 0.002 = 0.036 m/s



relative protrusion of a grain



Load and strength distribution



0 no movement at all

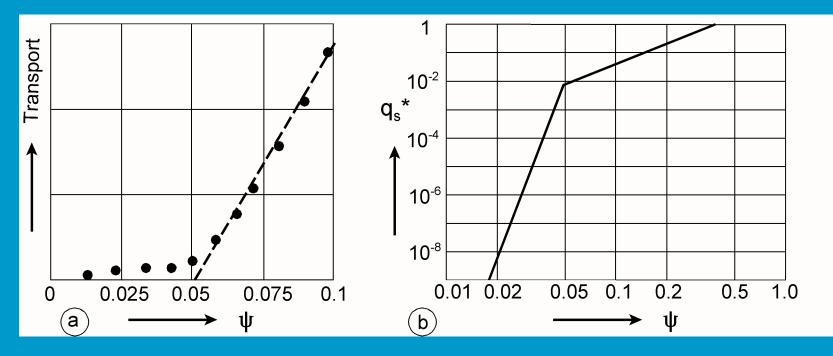
1 occasional movement at some locations
 2 frequent movement at some locations
 3 frequent movement at several locations
 4 frequent movement at many locations
 5 frequent movement at all locations
 6 continuous movement at all locations
 7 general transport of the grains

Incipient motion according to Shields

 $\frac{U = 0.60 \text{ m/s}, \Psi = 0.03}{U = 0.70 \text{ m/s}, \Psi = 0.04}$ $\frac{U = 0.83 \text{ m/s}, \Psi = 0.05}{U = 0.90 \text{ m/s}, \Psi = 0.055}$ $\frac{U = 0.92 \text{ m/s}, \Psi = 0.06}{U = 0.97 \text{ m/s}, \Psi = 0.07}$

ct4310/1 u=xxenPsi=xx bb 4310-3: Shieldsxxx

Threshold of motion



extrapolation to zero (Shields)

Paintal

Ψ is a stability parameter

Ψ is a mobility parameter

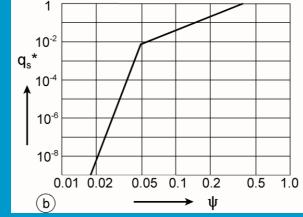
October 24, 2011

$$\begin{array}{l}
 q_s^* = 6.56 \cdot 10^{18} \ \psi^{16} \ (\text{for } \psi < 0.05) \\
 q_s^* = 13 \ \psi^{2.5} \ (\text{for } \psi > 0.05) \\
\end{array} \right\} \text{ with } q_s^* = \frac{q_s}{\sqrt{\Delta \ g \ d^3}}$$

example

- For $\Psi_c = 0.03$ is considered a safe choice
- Assume $d_d = 0.4 \text{ m}$
- $q_s = 6.56 * 10^{18} \Psi^{16} \sqrt{(\Delta d^3)} = 3*10^{-6} m^3/m/s$
- This is equivalent to 4 stones per day per m width
- Design velocity occurs only exceptional (1 % per year)
- Note: This loss is per m width and not per m²

```
After some time transport stops
in case \Psi < 0.06
In case \Psi > 0.06 transport never
stops
```



De Boer, 1998

October 24, 2011

nominal diameter

 $d_n = \sqrt[3]{V} = \sqrt[3]{M} / \rho$ $d_{n50} \neq d_{50}$

usually $d_{50} = 1.2 d_{n50}$

for a sphere $d_{50} = 1.24 \ d_{n50}$

21

influence of waterdepth

$$\frac{\overline{u_c}}{\sqrt{\Delta g d_{n50}}} = \frac{\zeta \sqrt{\psi_c}}{\sqrt{g}}$$

$$\frac{u_{ic}}{\sqrt{g}} = 1.7$$

$$\frac{u_{ic}}{\sqrt{\Delta g d}} = 1.7$$

$$C = 18 \log \frac{12h}{k_r}$$

$$C = 18 \log \frac{12h}{k_r}$$

$$K_r = 2*d_s$$
or $k_r = 3*d_s$

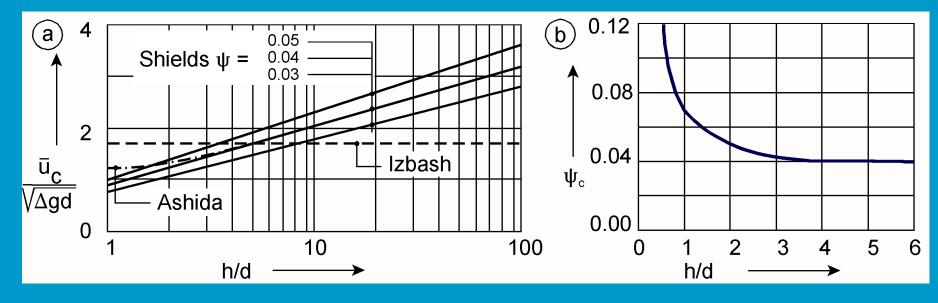
$$C = 18 \log \frac{12h}{k_r}$$

$$C = 18 \log \frac{12h}{k_r}$$

$$C = 18 \log \frac{12h}{k_r}$$

Octobe

influence water depth on critical velocity



Shields is valid in deep water (h/d>100) Ashida found a larger Ψ for shallow water (h/d <5)

It is obvious that Izbash gives a horizontal line

*f***U**Delft

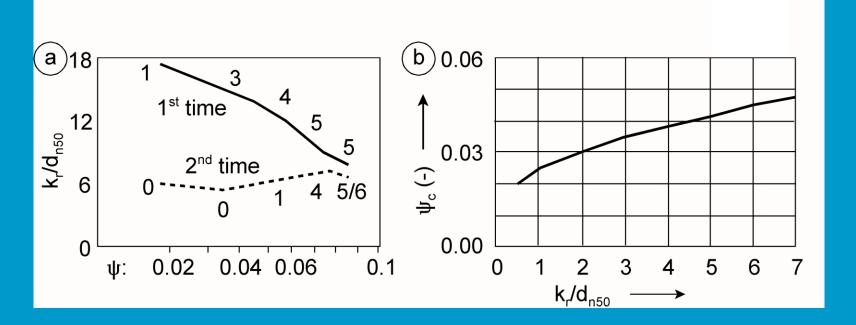
23

practical application

$$\frac{\overline{u_c}}{\sqrt{\Delta g \, d_{n50}}} = \frac{C\sqrt{\psi_c}}{\sqrt{g}} \rightarrow d_{n50} = \frac{\overline{u_c}^2}{\psi_c \Delta C^2}$$

October 24, 2011

Roughness and threshold of motion



Note the plating-effect (pantsering)Lammers, 1997Problem with the choice of Ψ :
do we select Ψ on the safe side or do we
use the expected value of Ψ ??

October 24, 2011

demo influence Ψ

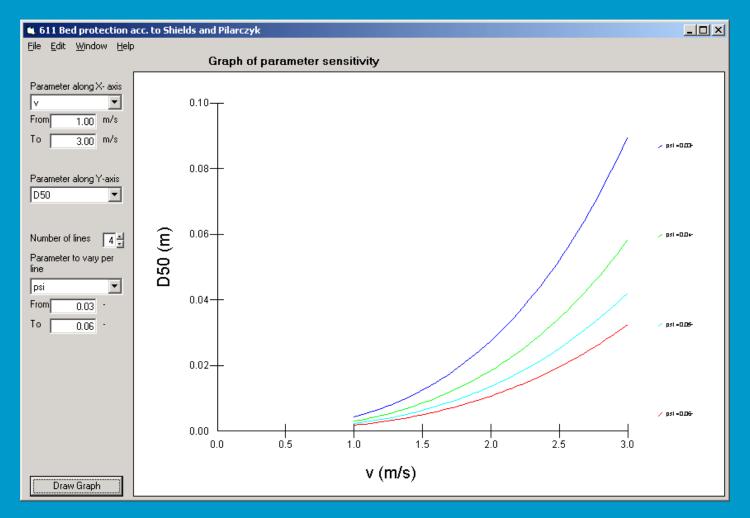
run demo Cress

River structures Bed protections

Influence of the parameter Ψ on rock size

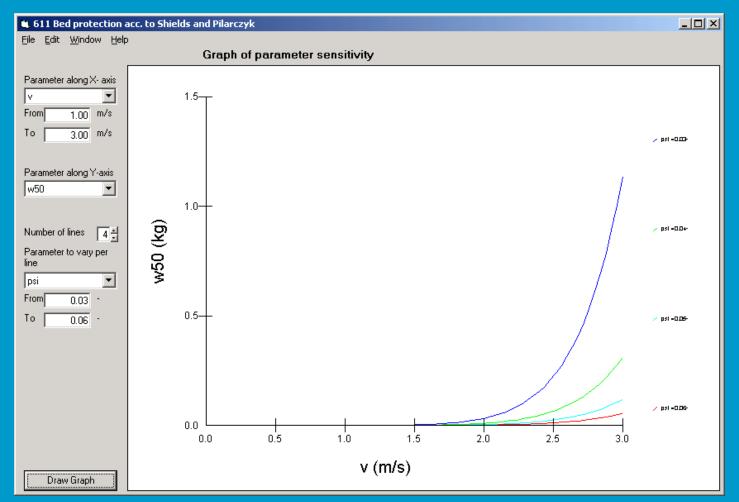
 $\begin{array}{lll} v & vary from 1...3 m/s \\ \Psi & 4 \mbox{ lines } 0.03...0.06 \\ h & 6 \mbox{ lines } 1 \hdots 1 \hdots 1 \mbox{ lines } 1 \mbox{ and } 2 \\ Fi & 3 \mbox{ lines } 30...40 \end{array}$

Variation of Ψ (output D₅₀)



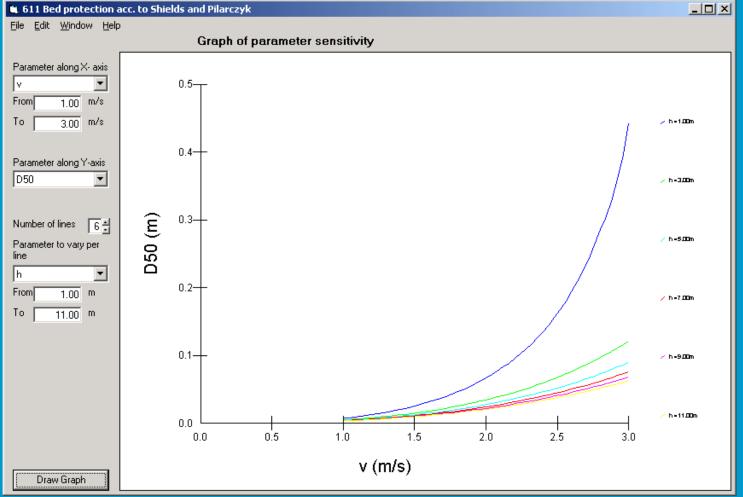
October 24, 2011

Variation of Ψ (output W_{50})

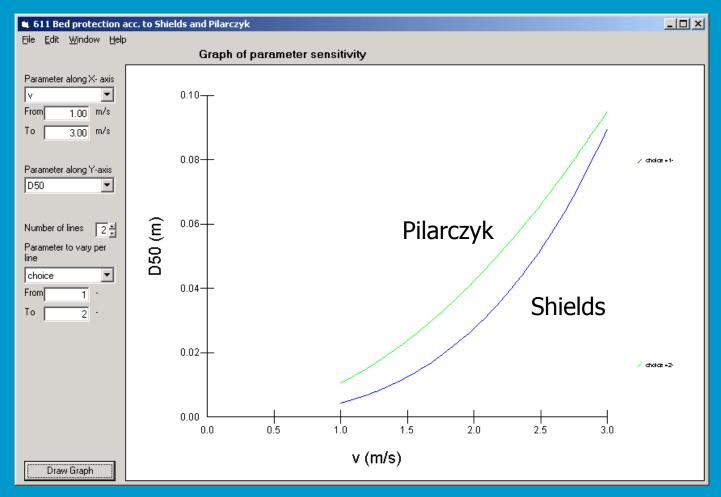


Variation of h

611 Bed protection acc. to Shields and Pilarczyk



Comparison Shields and Pilarczyk



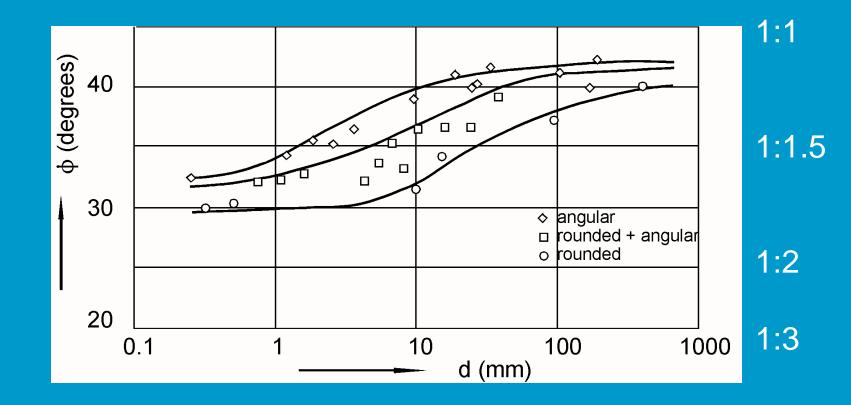
October 24, 2011

Movement of marine gravel (tests by Delft Hydraulics)

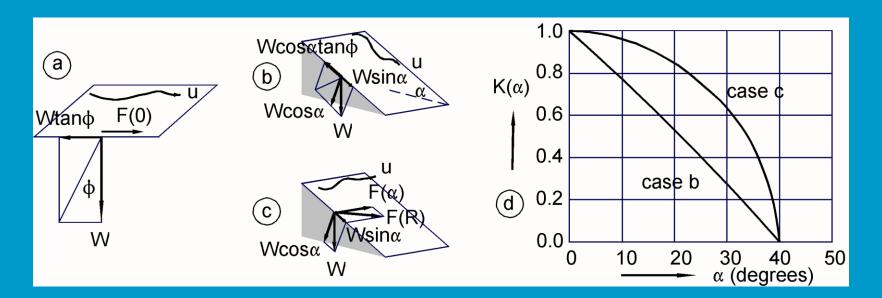
Flow velocity 0.65 m/s Flow velocity 1.05 m/s Flow velocity 1.35 m/s Flow velocity 1.43 m/s Flow velocity 1.43 m/s Flow velocity 1.53 m/s Flow velocity 1.70 m/s Flow velocity 1.80 m/s Flow velocity 2.10 m/s

ct4310/05

angles of repose for non-cohesive materials



influence of slope on stability

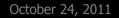


b = parallel flowc = perpendicular flow

slope parallel to current

$K(\alpha_{II}) = \frac{F(\alpha_{II})}{F(0)} = \frac{W \cos \alpha \tan \phi - W \sin \alpha}{W \tan \phi} = -\frac{W \cos \alpha \tan \phi}{W \tan \phi}$

$$=\frac{\sin\phi\cos\alpha-\cos\phi\sin\alpha}{\sin\phi}=\frac{\sin(\phi-\alpha)}{\sin\phi}$$



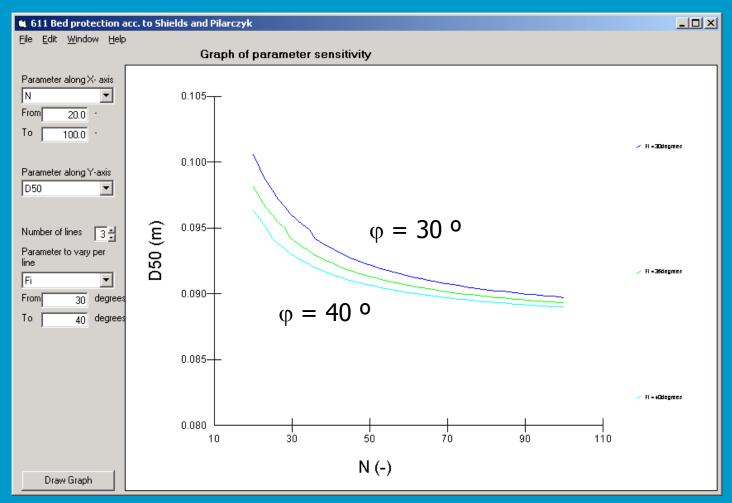
slope perpendicular to current

$$K(\alpha) = \frac{F(\alpha)}{F(0)} = \sqrt{\frac{\cos^2 \alpha \tan^2 \phi - \sin^2 \alpha}{\tan^2 \phi}} = 0$$

$$= \cos \alpha \sqrt{1 - \frac{\tan^2 \alpha}{\tan^2 \phi}} = \sqrt{1 - \frac{\sin^2 \alpha}{\sin^2 \phi}}$$

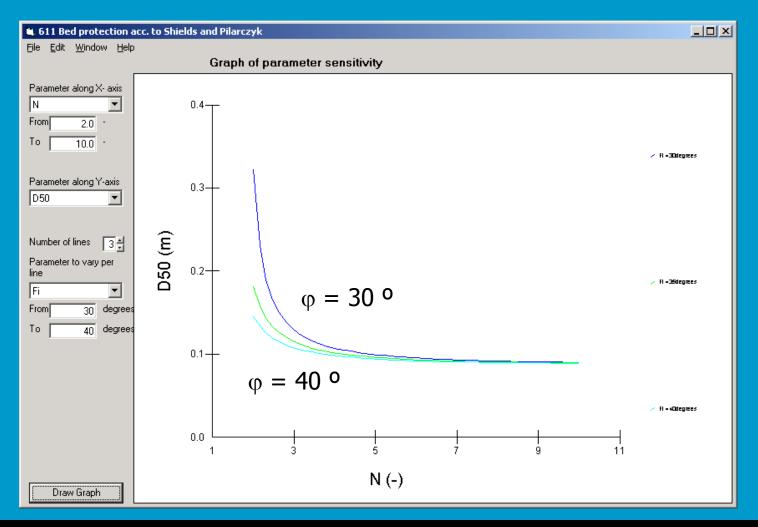
paral n from 1:20.. 1:100 perp. nfrom 1:2 .. 1:10 3 lines fi 30..40

Variation of bed slope (parallel flow)

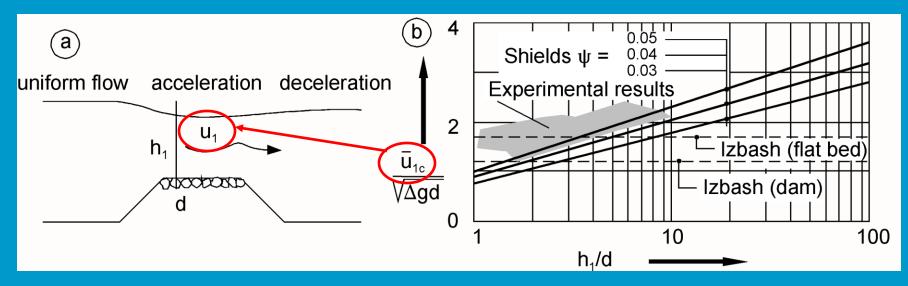


October 24, 2011

Variation of bed slope (perpendicular)



stability on top of sill

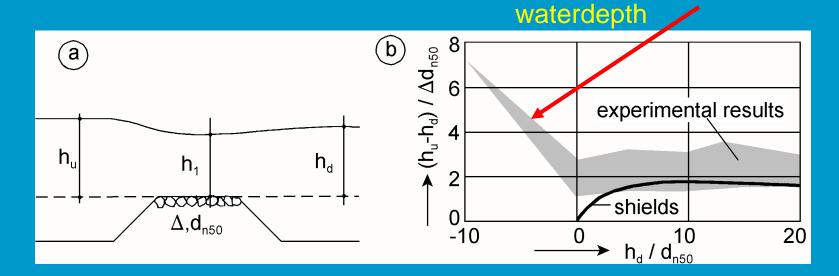


use velocity above threshold

Important aspect for closure works much research has been done in the framework of the Deltaworks

stability and head difference

Shields is useless here because Shields contains



waterlevel downstream is below the top of the dam

October 24, 2011

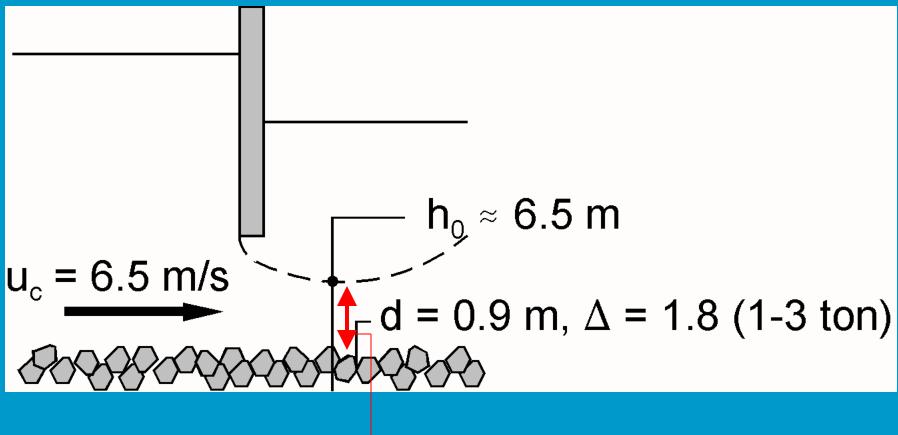
shields for flow over sill

$$u_1^2 = \mu^2 2 g (h_u - h_d) = (0.5 + 0.04 \frac{h_d}{d_{n50}}) 2 g (h_u - h_d)$$

discharge coefficient

October 24, 2011

stability flow under weir



Note that this cross section is less than the gap width

October 24, 2011

Shields in horizontal constriction

(horizontal closure with trucks)

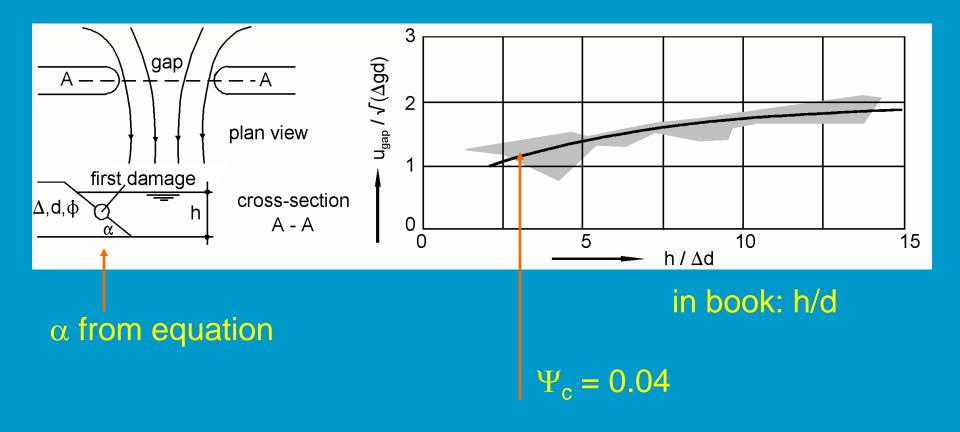
$$\frac{\overline{u_{gap}}}{\sqrt{\Delta gd_{n50}}} = C \sqrt{\frac{\psi_c}{g}} \sqrt{1 - \frac{\sin^2 \alpha}{\sin^2 \phi}} = 4.5 \log\left(\frac{3h}{d_{n50}}\right) \sqrt{\psi_c}$$

General formula
General formula
Correction for horizontal closure α slope of construction

(see also next slide) φ angle of repose (internal stability)



stability on head of dam



deceleration

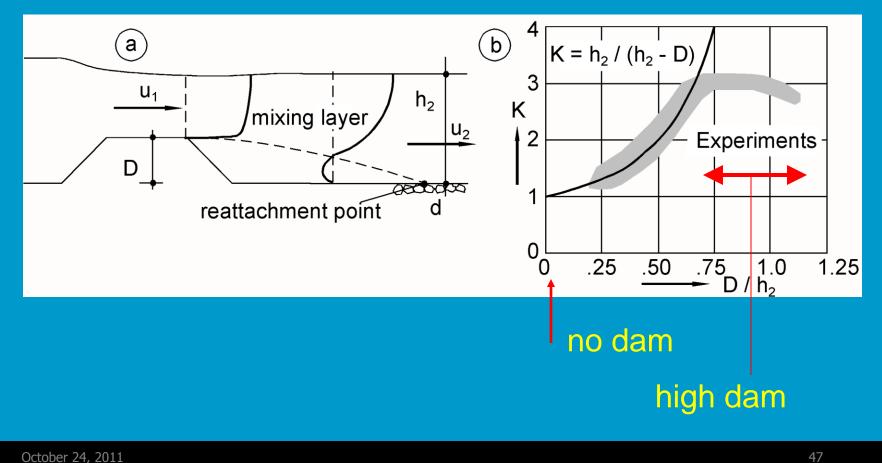
$K_{v} = \frac{u_{c} \text{ uniform flow}}{u_{c} \text{ with load increase}}$

relation between K and turbulence level

$$(1+3r_{cu})\overline{u}_{cu} = (1+3r_{cs})\overline{u}_{cs} \longrightarrow K_{v} = \frac{\overline{u}_{cu}}{\overline{u}_{cs}} = \frac{1+3r_{cs}}{1+3r_{cu}}$$

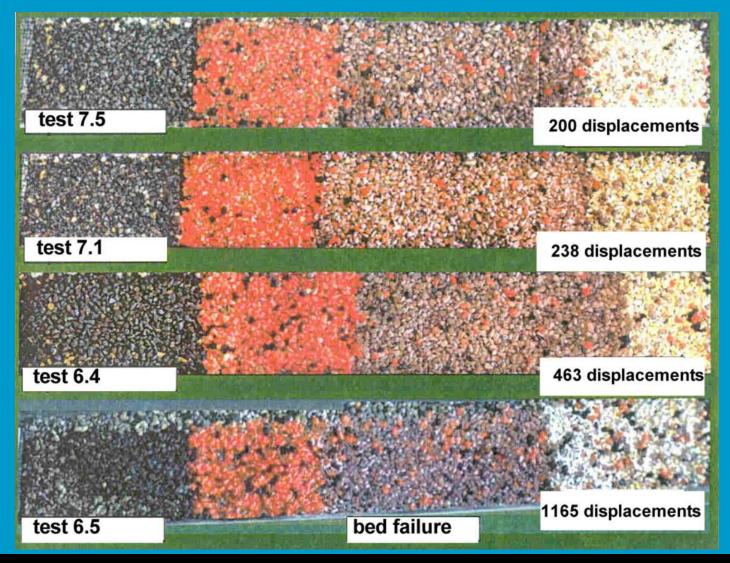
 u_{cu} = vertically averaged critical velocity in uniform flow u_{cs} = velocity in case with a structure r_{cu} = turbulence intensity in uniform flow r_{cs} = vertically averaged turbulence intensity

stability downstream of a sill



October 24, 2011

damage after some time



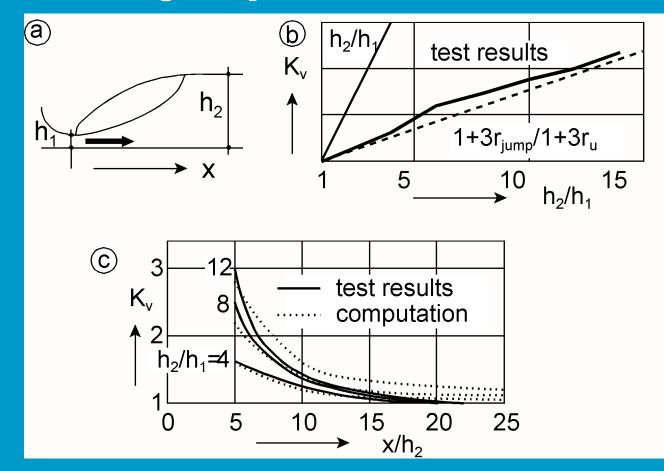
October 24, 2011

K in vertical constriction

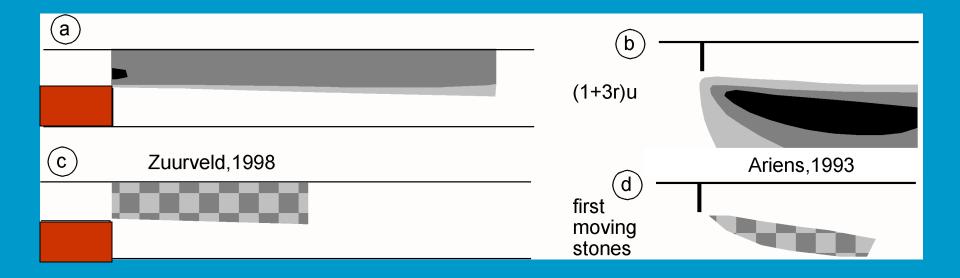
$$u_1(h_2 - D) = u_2 h_2 \rightarrow u_1 = \frac{h_2}{h_2 - D} u_2 \rightarrow K \propto \frac{h_2}{h_2 - D}$$

October 24, 2011

stone stability downstream of a hydraulic jump



peak velocities and incipient motion in horizontal constriction



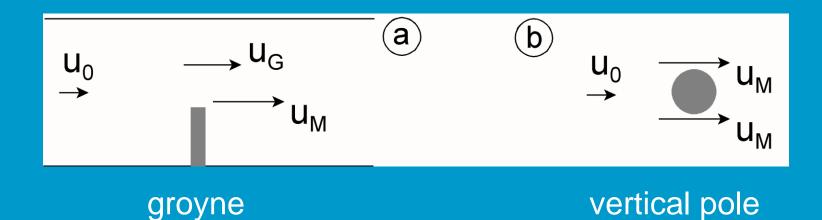
damage after constriction

ct4310/1 strommstenen bb 4310-2 Expansion sbability

zuurveld, 1998

October 24, 2011

definition of velocities



K_v - factors for various structures

Structure	Shape	K _{v0}	<i>K</i> _{vG}	K _{vM}
Groyne	Rect- angular	b_0 * K_{vG} / b_G	1.3 - 1.7	1.1 - 1.2
	Trape- U zoidal	b ₀ *K _v b _G	1.2	1
Abutment	Rect-	b₀*K _v /b _G	1.3 - 1.7	1.2
	Roun d	b ₀ *K _v /b _G	1.2 - 1.3	1.2
	Stream	b ₀ *K _v /b _G	1 - 1.1	1 - 1.1
Pier	Round O	$b_0^* K_v / b_G \otimes 2^* K_v$	1.2 - 1.4 🛛 🛞	1 - 1.1
	Rect- Angular	$b_0^* K_v / b_G \otimes 2^* K_v$	1.4 - 1.6 ⊗	1.2 - 1.3
Outflow	Abruptly		1	
	Stream Lined		0.9	
Sill	Тор —	Section	Section	Section
		3.6.1	3.6.1	3.6.1
	Down- Stream	Fig 3.13	Fig 3.13	Fig 3.13

 \otimes For many piers in a river the first expression for K_v is appropriate. The second is valid for a detached pier in an infinitely wide flow, where K_G is not defined.

combined equation

$$d = \frac{K_v^2 \cdot u_c^2}{K_s \psi_c \Delta C^2}$$

K_v = reduction for constriction, etc. K_s = reduction for slope (parallel, perpendicular)

practical application (1)

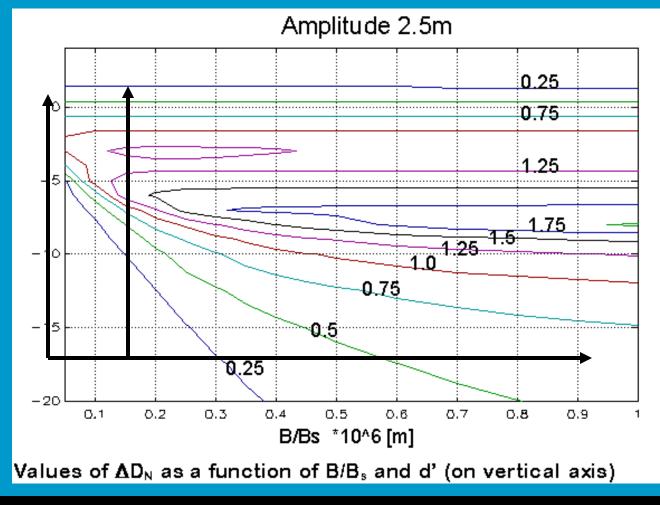
$$d = \frac{K_v^2 \cdot \overline{u_c}^2}{K_s \psi_c \Delta C^2}$$
However, in practice $K_v^2 / K_s \cong 1$

$$\Delta D_n = A \bullet u_c^2$$

$$\int_{a}^{0.5} \frac{1}{4} \int_{a}^{0.5} \frac{1}{4} \int_{a$$

October 24, 2011

practical application (2)



placed blocks

