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Introduction 

• focus on non-cohesive grains 

• grains may vary in size from microns to tons 

• basic principle not very different 

• always turbulent 
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forces on a grain in flow 
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forces on a stone 
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load and strength relationship 
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Izbash (1930) 

2
c c

c

u u
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2 g g d
 



•no waterdepth 

•no good definition of uc and d 
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Approach of Shields (1936) 

• Stability of stones depends on (generalized) friction force 

• The force of flowing water on bed is: 

           F= Area * ghi   (or t = ghi) 

• Make stability number based on t and d 

• Make this number dimensionless by dividing by g and (s-w) 

• So:  

   
c w

c

s w s w

ghi

gd gd

t 


   
 

 

No velocity in 

equation 

No need to measure 

velocity 
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Comparison of Shields and Izbash 

• Both are formulas with stability as function of u2 

• Izbash focuses on the force action on one single grain 

• Shields focuses on the average shear stress on the bed 

• Shields does not consider individual grains 

• Izbash explicitly looks to individual rocks 
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Shields (1936) 
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Only valid assuming the 

Chezy equation is valid 
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original Shields (1936) 
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example : 

waterdepth 10 m, u= 1m/s 

D50 = 8 cm, k= 25 cm 

z0 = 8 mm 

U* = 0.063 m/s 

Velocity at a certain height 
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critical shear stress according to 
Shields               Van Rijn 
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Example for determination of d* 
(Shields) 

What is u*c for sand of 2 mm?? 

Wild guess: u*c is 1 m/s 

 
*

* 6

1 0.002
Re 1500

1.33 10

cu d

 


  



 

Thus: c = 0.055 
2
*

*
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Example for determination of d* (Van 
Rijn) 

d = 2 mm 
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relative protrusion of a grain 
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Load and strength distribution 

0 no movement at all 

1 occasional movement at some locations 

2 frequent movement at some locations 

3 frequent movement at several locations 

4 frequent movement at many locations 

5 frequent movement at all locations 

6 continuous movement at all locations 

7 general transport of the grains Shields 
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Incipient motion according to Shields 

U = 0.70 m/s, =0.04 

U = 0.83 m/s, =0.05 

U = 0.90 m/s, =0.055 

U = 0.92 m/s, =0.06 

U = 0.97 m/s, =0.07 

U = 0.60 m/s, =0.03 

ct4310/1 u=xxenPsi=xx 

bb 4310-3: Shieldsxxx 

u=070eno=004.mpg
u=070eno=004.mpg
u=070eno=004.mpg
u=083eno=005.mpg
u=083eno=005.mpg
u=083eno=005.mpg
u=090eno=0055.mpg
u=090eno=0055.mpg
u=090eno=0055.mpg
D:/u=092eno=006.mpg
u=092eno=006.mpg
u=092eno=006.mpg
u=092eno=006.mpg
u=097eno=007.mpg
u=097eno=007.mpg
u=097eno=007.mpg
u=060eno=003.mpg
u=060eno=003.mpg
u=060eno=003.mpg
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Threshold of motion 

extrapolation to zero                                         Paintal 

(Shields) 

 is a stability parameter          is a mobility parameter 
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Paintal 
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example 

• For c = 0.03 is considered a safe choice 

• Assume dd = 0.4 m 

• qs = 6.56 *1018 16 (d3) =3*10-6   m3/m/s 

• This is equivalent to 4 stones per day per m width 

• Design velocity occurs only exceptional (1 % per year) 

• Note: This loss is per m width and not per m2 

De Boer, 1998 

After some time transport stops 

in case  < 0.06 

In case  > 0.06 transport never 

stops 
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nominal diameter 

33 /nd V M  

50 50nd d

       usually d50 = 1.2 dn50 

 
for a sphere d50 = 1.24 dn50  
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influence of waterdepth 
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roughness 

    kr = 2*d50 

or kr = 3*d50 

Attention: 

    
c icu u
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influence water depth on critical 
velocity 

Shields is  valid in deep water  (h/d>100) 

Ashida found a larger  for shallow water (h/d <5) 

It is obvious that Izbash gives a horizontal line 



October 24, 2011 24 

practical application 
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Roughness and threshold of motion 

Note the plating-effect (pantsering) 

Problem with the choice of : 

 do we select  on the safe side or do we 

 use the expected value of  ?? 

Lammers, 1997 
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demo influence  

run demo Cress 

River structures 

Bed protections 

 

Influence of the parameter  on rock size 

 
v   vary from 1…3 m/s 

        4 lines   0.03…0.06 

h         6 lines  1 ….11 

choice 2 lines  1 and 2 

Fi        3 lines   30…40 

C:/CRESSWIN/CRESSWIN.EXE
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Variation of  (output D50) 
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Variation of  (output W50) 
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Variation of h 
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Comparison Shields and Pilarczyk 

Shields 

Pilarczyk 
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Movement of marine gravel 
(tests by Delft Hydraulics) 

Flow velocity 0.65 m/s 

Flow velocity 1.05 m/s 

Flow velocity 1.35 m/s 

Flow velocity 1.43 m/s 

Flow velocity 1.53 m/s 

Flow velocity 1.70 m/s 

Flow velocity 1.80 m/s 

Flow velocity 2.10 m/s 

ct4310/05 

Gravel01.MPG
Gravel02.MPG
Gravel03.MPG
Gravel04.MPG
Gravel05.MPG
Gravel06.MPG
Gravel07.MPG
Gravel08.MPG
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angles of repose for non-cohesive 
materials 

1:1 

 

 

1:1.5 

 

 

1:2 

 

1:3 
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influence of slope on stability 

b = parallel flow 

c = perpendicular flow 
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slope parallel to current 

//
//

cos tan sin sin cos cos sin sin

tan sin sin

F( ) W      -  W   (   -  )
K( ) =  =  = 

F(0) W   

         


  




//
//

cos tan sin sin cos cos sin sin

tan sin sin

F( ) W      -  W   (   -  )
K( ) =  =  = 

F(0) W   
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slope perpendicular to current 

cos tan sin tan sin
cos

tan tan sin

2 2 2 2 2

2 2 2

F( )    -  
K( ) =  =  =   1  -   = 1  -  

F(0)

     
 

  

cos tan sin tan sin
cos

tan tan sin

2 2 2 2 2

2 2 2

F( )    -  
K( ) =  =  =   1  -   = 1  -  

F(0)

     
 

  
paral n from 1:20.. 1:100 

perp. nfrom 1:2 .. 1:10 

            3 lines fi 30..40 

C:/CRESSWIN/CRESSWIN.EXE
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Variation of bed slope (parallel flow) 

 = 30 º 

 = 40 º 
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Variation of bed slope (perpendicular) 

 = 30 º 

 = 40 º 
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stability on top of sill 

use velocity above threshold 

Important aspect for closure works 

much research has been done in the framework of the 

Deltaworks 
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stability and head difference 

Shields is useless here 

because Shields contains 

waterdepth 

waterlevel downstream is below 

the top of the dam 
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shields for flow over sill 

50

22 d
1 u d u d

n

h
 =  2 g (h  - h ) = (0.5 + 0.04 ) 2 g (h  - h )u

d


discharge coefficient 
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stability flow under weir 

Note that this cross section is less 

than the gap width 
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Shields in horizontal constriction 

c
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4
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 5050

3
log5.4

sin

sin

General formula 

(horizontal closure with trucks) 

Correction for horizontal closure 

 slope of construction 

         (see also next slide) 

 angle of repose (internal stability) 
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stability on head of dam 

 from equation 
in book: h/d 

c = 0.04 
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deceleration 

c
v

c

 uniform flowu
 = K

 with load increase u
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relation between K and turbulence 
level 

 
1 3

(1 3 ) 1 3
1 3

cu cs
cu cu cs cs v

cs cu

u r
r u r u K

u r


     



ucu = vertically averaged critical velocity in uniform flow 

ucs = velocity in case with a structure 

rcu = turbulence intensity in uniform flow 

rcs = vertically averaged turbulence intensity 
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stability downstream of a sill 

high dam 

no dam 
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damage after some time 
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K in vertical constriction 

2 2
1 2 2 2 1 2

2 2

h h
 (   -  D) =       =       K  u h u h u u

  -  D   -  Dh h
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stone stability downstream of a 
hydraulic jump 
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peak velocities and incipient motion 
in horizontal constriction 
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damage after constriction 

zuurveld, 

1998 

ct4310/1 strommstenen 

bb 4310-2 Expansion sbability 

strommstenen.mpg
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definition of velocities 

groyne                                       vertical pole 
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Kv - factors for various structures 
Structure Shape Kv0 KvG KvM 

Rect- 

angular 

b0*KvG/bG 1.3 - 1.7 1.1 - 1.2 Groyne 

Trape- 

zoidal 

b0*KvbG 1.2 1 

Rect- 

Angular 

b0*Kv/bG 1.3 - 1.7 1.2 

Round 

 

b0*Kv/bG 1.2 - 1.3 1.2 

Abutment 

Stream 

Lined 

b0*Kv/bG 1 - 1.1 1 - 1.1 

Round 

 

b0*Kv/bG     

2*Kv       

1.2 - 1.4     1 - 1.1 Pier 

 

Rect- 

Angular 

b0*Kv/bG     

2*Kv 

1.4 - 1.6     1.2 - 1.3 

Abruptly 

 

-- 1 -- Outflow 

Stream 

Lined 

-- 0.9 -- 

Top 

 

Section 

 3.6.1 

Section 

3.6.1 

Section 

3.6.1 

Sill  

Down 

Stream 

Fig 3.13 Fig 3.13 Fig 3.13 

 For many piers in a river the first expression for Kv is appropriate. The second 

is valid for a detached pier in an infinitely wide flow, where KG is not defined.  
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combined equation 

 22
v c

2
s c

    uK
d = 

   CK 





Kv = reduction for constriction, etc. 

Ks = reduction for slope (parallel, perpendicular) 
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practical application (1) 

 22
v c

2
s c

    uK
d = 

   CK 





However, in practice Kv
2 / Ks  1 

D A un c  2
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practical application (2) 
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placed blocks 


