Flow, Erosion

Chapter 4

ct4310 Bed, Bank and Shoreline protection H.J. Verhagen

Introduction

- after the material has come into motion we have erosion
- erosion will continue until there comes a new equilibrium
- this is typically a scour problem
- scour is a gradient in sediment transport
- scour may be caused by:
- change in hydraulic conditions (e.g. acceleration or increased turbulence)
- availability of erodible material (difference between sediment transport capacity and sediment transport)

TUDelft

the scour process

$$
\frac{\partial z_{b}}{\partial t}+\frac{\partial S}{\partial x}=0
$$

TUDeft

general picture local erosion

- $\mathrm{S}_{2}=\mathrm{S}_{1}>0$ dynamic equilibrium situation
- $\mathrm{S}_{2}>\mathrm{S}_{1}=0$ clear water scour
- $\mathrm{S}_{2}>\mathrm{S}_{1}>0$ live-bed scour
sediment transport is not always identical to sediment transport capacity

TUDelft

Erosion due to turbulence

- Erosion downstream of a sill, due to turbulence
- Velocities and turbulence measured with micromill.
- Influence average velocity; v=0.2 m/s bed position and scouring hole
- at 0 min,
- 5 min,
- 10 min,
- 20 min ,
- 40 min ,
- 80 min;
- same for $0.3 \mathrm{~m} / \mathrm{s}, 2 \mathrm{~min}, 5 \mathrm{~min}, 10 \mathrm{~min}, 20 \mathrm{~min}, 40 \mathrm{~min}$,
- Influence of Turbulence, by making a rough bed on the sill, after 10,20 and 40 min

sand transport formula

threshold value
 $$
S=f\left(\psi-\psi_{c}\right) \quad \text { or } \quad S=f(\psi)
$$

dynamic equilibrium

$$
w_{s} \bar{c}+v_{s} \frac{\partial \bar{c}}{\partial z}=0
$$

TUDelft

scour at the Eastern Scheldt

types of scour

- scour without protection
- jets and culverts
- detached bodies (bridge piers)
- attached bodies and constrictions
- abutments
- groynes
- scour with bed protection
- scour development in time
- dustbin factor α
- flow slides

THDelft

Scour hole and development in time

THDelft

scour in horizontal jets and culverts

plane jet: $\frac{h_{s e}}{2 B}=0.008\left(\frac{u_{0}}{u_{s c}}\right)^{2}$

culvert

$\frac{h_{s e}}{D}=0.65\left(\frac{u_{0}}{u_{s_{c}}}\right)^{0.33}$

TUDelft

scour around a cylinder

THDelft

scour around a cylinder as function of waterdepth and diameter

THDelft

scour in case of other forms

$$
\frac{h_{s}}{D}=2 K_{S} K_{\alpha} K_{u} \tanh \left(\frac{h_{0}}{D}\right)
$$

Pier shape	I / b	K_{s}
Cylinder	-	1.0
Rectangular	1	1.2
	3	1.1
	5	1.0
Elliptic	2	0.85
	3	0.8
	5	0.6

In Cress roughness is assumed to be $3 \mathrm{D}_{90}$; in book $2 \mathrm{D}_{50}$ is used
$\mathrm{K}_{\mathrm{s}}=$ shape factor
$\mathrm{K}_{\alpha}=$ angle of attack
$\mathrm{K}_{\mathrm{u}}=$ velocity factor

scour around abutments

TUWDelft

Flow velocities and scour in

 Zeebrugge

Velocities in m/s

erosion in gradual constriction

$$
\left.\begin{array}{l}
Q=B_{1} u_{1} h_{1}=B_{2} u_{2} h_{2} \rightarrow u_{2}=u_{1} \frac{B_{1} h_{1}}{B_{2} h_{2}} \\
S=B_{1} k u_{1}^{m}=B_{2} k u_{2}^{m}
\end{array}\right\} \rightarrow \frac{B_{1}^{m-1}}{B_{2}^{m-1}}=\frac{h_{2}^{m}}{h_{1}^{m}} \rightarrow \frac{h_{2}}{h_{1}}=\left(\frac{B_{1}}{B_{2}}\right)^{\frac{m-1}{m}}
$$

groynes

$$
h_{0}+h_{s e}=2.2\left(\frac{Q}{B-b}\right)^{2 / 3}
$$

THDelft

scour behind bed protection

$$
h_{s}(t)=\frac{\left(\alpha \bar{u}-\bar{u}_{c}\right)^{1.7} h_{0}^{0.2}}{10 \Delta^{0.7}} t^{0.4}
$$

$\mathrm{h}_{\mathrm{s}}(\mathrm{t})$ maximum scour depth
$h_{0} \quad$ original water depth
u vertically averaged velocity at end of protection
$\mathrm{u}_{\mathrm{c}} \quad$ critical velocity
t time in hours
$\alpha \quad$ dust bin parameter

THDelft

Graph of parameter sensitivity

Parameter along X-axis | t | ∇ |
| :--- | ---: |
| From | 0.0 |
| days | |
| | 20.0 |
| | |

Parameter along Y-axis
hmax
Number of lines $\sqrt{5} \frac{1}{\sqsupset}$

Parameter to vary per line
$\mathrm{d} \quad \square$

From | 0.00 |
| :--- |
| m |
| To |
| |$\frac{4.00}{} \mathrm{~m}$

Draw Graph

THDelft

influence of α

(d)

use local value of α $\alpha_{L}=1.5+5 r$

TUUDelft

steps to calculate α (1)

Hinze (1975):
$r_{0}=\sqrt{0.0225\left(1-\frac{D}{h}\right)^{-2}\left(\frac{L-6 D}{6.67 h}+1\right)^{-1.08}+\frac{1.45 g}{C}}$
eq. 2.13
$D=$ step height
$h=$ downstream waterdepth

Hoffmans $(1992,1993)$

$$
\alpha_{L}=1.5+5 r
$$

comparison model and prototype

De Grauw and Pilarczyk 1981

TUD

values of α for vertical and horizontal constrictions

ocw.tudelft.nl
THDelft

relation between α, turbulence and

 length

$$
\alpha=1.5+5 r_{0} f_{c} \quad \text { with } \quad \begin{gathered}
f_{c}=\frac{C}{40} \quad\left(f_{c}=1 \text { for } C \leq 40\right) \\
\\
\\
\text { From Hofimans (1993) }
\end{gathered}
$$

The r_{0} comes from Hoffmans and Hinze

steps to calculate α (2)

Hinze (1975):

$$
r_{0}=\sqrt{0.0225\left(1-\frac{D}{h}\right)^{-2}\left(\frac{L-6 D}{6.67 h}+1\right)^{-1.08}+\frac{1.45 g}{C}}
$$

$$
\text { eq. } 2.13
$$

D = step height
h = downstream waterdepth

Hoffmans $(1992,1993)$

$$
\alpha_{\mathrm{L}}=1.5+5 r
$$

$$
\begin{aligned}
& \text { Hoffmans and Booij (1993) } \\
& \alpha=1.5+5 r_{0} f_{c} \quad \text { with } \quad f_{c}=\frac{C}{40} \quad\left(f_{c}=1 \text { for } C \leq 40\right)
\end{aligned}
$$

Trinh (1993)
$\alpha=\left(1.5+5 r_{0} f_{c}\right) f_{u}$
$f_{u}=1+3.6\left(1-\frac{b}{B_{s}}\right)^{2.2} \quad \begin{aligned} & \mathrm{B}_{\mathrm{s}} \text { is original gap width } \\ & \mathrm{b} \text { is reduced gap widith }\end{aligned}$

Scouring tests in the lab

- No obstacle, $10 \mathrm{~cm} / \mathrm{sec}$
- No obstacle, $20 \mathrm{~cm} / \mathrm{sec}$
- No obstacle, $30 \mathrm{~cm} / \mathrm{sec}$
- With obstacle, $10 \mathrm{~cm} / \mathrm{sec}$
bb: 4310-04: ErosionTurbulence 2-5

varying conditions

How to do this in practice ??

THDelft

rough approximation of the tide

in case of closing works..

- tide varies
- gap becomes smaller
- sill becomes higher

stepwise calculation

example scouring during closing

Vertical closure, 20 m deep, 200 m long, tidal amplitude 3.5 m Maximum stone supply $4000 \mathrm{~m}^{3} /$ day, so $4000 / 200=20 \mathrm{~m}^{2} /$ day .

Calculation in 10 slices of 2 m thickness; crest with is 10 m , slope 1:2. Volume deepest slice $\left(2^{*} 19+10\right)^{*} 2=96 \mathrm{~m}^{3} / \mathrm{m}$, this takes 4.8 days.
Divide by 5 for tidal conditions.

\%	Depth (m)	$\begin{gathered} \mathrm{u}_{0} \\ (\mathrm{~m} / \mathrm{s}) \end{gathered}$	d (m)	$\begin{gathered} \text { Vol } \\ \left(\mathrm{m}^{3} / \mathrm{m}\right) \end{gathered}$	Time/5 (days)	$\begin{aligned} & U_{\mathrm{e}} \\ & (\mathrm{~m} / \mathrm{s}) \end{aligned}$	$\begin{gathered} \left.\mathrm{t}^{\mathrm{t}^{\mathrm{a}}}\right) \\ \text { (dass) } \end{gathered}$	$\begin{gathered} \mathrm{t} \\ \text { (days) } \end{gathered}$	$\mathrm{h}_{\text {max }}$ (m)
10	19	2.8	2	96	. 96	2.7	0.00	0.96	9.54
20	17	3.2	4	88	88	2.4	1.35	2.23	11.56
30	15	3.8	6	80	. 80	2.1	3.15	3.95	12.56
40	13	4.7	8	72	. 72	1.8	5.70	6.42	13.16
50	11	5.7	10	64	. 64	1.5	9.30	9.94	13.48
60	9	6.5	12	56	56	1.2	14.50	15.06	13.67
70	7	6.7	14	48	48	0.9	21.90	22.38	13.79
80	5	5.5	16	40	40	0.6	32.00	32.40	13.86
90	3	4.0	18	32	32	0.3	44.40	44.72	13.90
otal			567	5.76					

TUDelft

equilibrium clear water scour

$$
\left.\begin{array}{l}
u_{c}=0.5 \alpha \bar{u}_{s} \\
\bar{u}_{s}\left(h_{0}+h_{s e}\right)=\bar{u} h_{0}
\end{array}\right\} \rightarrow \frac{h_{s e}}{h_{0}}=\frac{0.5 \alpha \bar{u}-\bar{u}_{c}}{\bar{u}_{c}}
$$

live bed scour

$$
\begin{aligned}
I & =\frac{1}{2}\left(\cot \beta_{1}+\cot \beta_{2}\right) h_{s}^{2} \\
& =\left[.005\left(\cot \beta_{1}+\cot \beta_{2}\right) \Delta^{-1.4} h_{0}^{0.4}\left(\alpha \bar{u}-\bar{u}_{c}\right)^{3.4}\right] t^{0.8}=K t^{0.8}
\end{aligned}
$$

$I_{\text {red }}=K t^{0.8}-S \cdot t \rightarrow h_{s \text { red }}=\sqrt{\frac{I_{\mathrm{red}}}{0.5 \cdot\left(\cot \beta_{1}+\cot \beta_{2}\right)}}$
$\frac{d I}{d t}=0 \rightarrow 0.8 K t^{-0.2}=S \rightarrow t_{e}=\left(\frac{0.8 K}{S}\right)^{5} \rightarrow h_{s e}=\sqrt{\frac{K t_{e}^{0.8}-S \cdot t_{e}}{\frac{1}{2}\left(\cot \beta_{1}+\cot \beta_{2}\right)}}$

TUDelft

stability of protection

(B)

This distance has to be large enough

$$
L=f(\beta)
$$

TUDelft

the slope angle $\boldsymbol{\beta}$

$$
\beta=\arcsin \left[3 \cdot 10^{-4} \frac{u_{0}^{2}}{\Delta g d_{50}}+\left(0.11+0.75 r_{0}\right) f_{c}\right]
$$

$$
\left(f_{c}=\frac{C}{40}, f_{c}=1 \text { for } C \leq 40\right)
$$

TUDelft

stability and slides

values for the two slopes follow from an analysis of various flowslides

TUDelft

Bezinking van den onderzeeschen oever voor de Kleine Huissens en den cal. Eendracht-polder

\qquad

Kleine Huissens polder

Inlaagdijk

