Satellite Navigation error sources and position estimation

AE4E08

Sandra Verhagen

Course 2010 – 2011, lecture 5

1

Today's topics

- Recap: GPS measurements and error sources
- Satellite clock and ephemeris
- Assignments VISUAL and RINEX
- Signal propagation errors: ionosphere and troposphere

• Book: Sections 5.2 – 5.3

Recap: Code and Carrier Phase measurements

$$\rho = r + I_{\rho} + T_{\rho} + c \left[\delta t_{u} - \delta t^{s} \right] + \varepsilon_{\rho}$$

$$\Phi = r + I_{\phi} + T_{\phi} + c \cdot \left(\delta t_{u} - \delta t^{s}\right) + \lambda \cdot A + \varepsilon_{\Phi}$$

3

Recap: error sources

- satellite:
 - orbit
 - clock
 - instrumental delays
- signal path
 - ionosphere
 - troposphere
 - multipath

- receiver
 - clock
 - instrumental delays
- other
 - spoofing
 - interference

Satellite clock and ephemeris

- determined by Control Segment based on measurements
- parameters in navigation message
- Kalman filter prediction
 - positions and velocities of satellites
 - phase bias, frequency bias, frequency drift rate clocks
 - \rightarrow prediction errors (grow with age of data)

Currently, ranging error < 3 meter rms

Satellite clock and ephemeris

• Ephemeris: radial, along-track, cross-track errors. Which is of the three is principal error source?

Satellite clock and ephemeris

Satellite clock correction:

$$\delta t^{s} = t^{s} - t = a_{f0} + a_{f1}(t - t_{0c}) + a_{f2}(t - t_{0c})^{2} + \Delta t_{r}$$

- t_{0c} reference epoch
- a_{f0} clock offset [s] ~1 µs 1 ms
- a_{f1} fractional frequency offset [s/s] ~10⁻¹¹ s/s
- a_{f2} fractional frequency drift [s/s²] ~0 s/s²
- Δt_r relativistic correction

Misra and Enge, Section 4.2.4

broadcast with navigation message

Refractive index of a medium:
$$n = \frac{1}{2}$$

- Refractive index changes along path
- Change in speed \rightarrow change in travel time of signal

9

.

С

Refractive index of a medium:
$$n =$$

 Snell's law: changing refractive index results in bending of path → path longer than geometrical straight line

$$n_1 \sin \theta_1 = n_2 \sin \theta_2 \qquad n_1 \qquad \theta_1$$

$$\rightarrow \text{ effect very small} \qquad n_2 \qquad \theta_2$$

• Fermat's principle of least time: transit time along curved path is shorter than for straight-line path

- Refractive index changes along path: n(l)
- Change in speed \rightarrow change in travel time τ of signal

$$\tau = \frac{1}{c} \int_{S}^{R} n(l) dl$$

11

R

Refractive index of a medium:
$$n =$$

- Refractive index changes along path: n(l)
- Change in speed \rightarrow change in travel time τ of signal

$$\tau = \frac{1}{c} \int_{S}^{R} n(l) dl$$

• Excess delay:

ay:
$$\Delta \tau = \frac{1}{c} \left[\int_{S}^{R} n(l) dl - \int_{S}^{R} dl \right] \rightarrow \Delta \rho = \int_{S}^{R} [n(l) - 1] dl$$

R

″UDelft

dl

- Dispersive medium: refractive index depends on frequency of signal
- For GPS (L-band) signals: ionosphere is dispersive, troposphere is not
- In dispersive medium: different phase (carrier) and group (code) velocities, v_p and v_g , resp.

$$p_p = \frac{c}{v_p}$$
 $n_g = \frac{c}{v_g} = n_p + f \frac{dn_p}{df}$

modulated carrier wave
→ superposition of a
group of waves of
different frequencies

13

n

- ionosphere contains free electrons and ions
- ionization caused by sun's radiation → state depends on solar activity
- temporal variations:
 - during the day, peak at 2 PM local time
 - day to day due to solar activity, geomagnetic disturbances
 - seasonal
 - 11-year solar cycle
 - local short term effects due to traveling ionospheric disturbances

 propagation speed depends on total electron content (TEC) = number of electrons in tube of 1 m² from receiver to satellite

$$\mathsf{TEC} = \int_{S}^{R} n_{e}(l) dl \qquad [\mathsf{TECU}]$$

- with $n_e(l)$ the electron density along the path
- 1 TECU (TEC Unit) = 10^{16} electrons / m^2
- **VTEC** = TEC in vertical direction [in book TECV]

Global map of TEC (computed from global network of GPS receivers)

Figure from S.M. Radicella – ARPL; Data Astronomical Institute University of Berne

CODE'S GLOBAL IONOSPHERE INFO FOR DAY 177, 2000 - 00:15 UT

TEC (TECU)

- highest ionospheric delay within ±20° of magnetic equator
- solar flares
 - → magnetic storms
 - \rightarrow large and quickly varying electron densities, esp. polar regions
 - → rapid fluctuations in phase and amplitude of GPS signals, called scintillation and fading, resp.

 \rightarrow may cause losses of lock

[m]

phase advance

$$n_p = \frac{c}{v_p} \approx 1 - \frac{40.3n_e}{f^2}$$
 $\text{TEC} = \int_{S}^{R} n_e(l) dl_{s}$

$$\Delta \tau_{p} = \frac{1}{c} \int_{S}^{R} \left(n_{p}(l) - 1 \right) dl$$

= $-\frac{1}{c} \int_{S}^{R} \frac{40.3n_{e}(l)}{f^{2}} dl = -\frac{40.3 \cdot \text{TEC}}{cf^{2}} \text{ [s]}$

$$I_{\phi} = c\Delta\tau_p = -\frac{40.3 \cdot \text{TEC}}{f^2}$$

$$\Phi = r + I_{\phi} + T_{\phi} + c \cdot \left(\delta t_{u} - \delta t^{s}\right) + \lambda \cdot A + \varepsilon_{\Phi}$$

TUDelft

group delay

$$n_g = n_p + f \frac{dn_p}{df} = 1 + \frac{40.3n_e}{f^2}$$

$$I_{\rho} = c\Delta\tau_g = \frac{40.3 \cdot \text{TEC}}{f^2} \quad [\text{m}]$$

$$\rho = r + I_{\rho} + T_{\rho} + c \left[\delta t_{u} - \delta t^{s} \right] + \varepsilon_{\rho}$$

$$I_{\rho}=-I_{\phi}=I$$

TUDelft

20

TUDelft

Satellite Navigation (AE4E08) - Lecture 4

zenith delay mid-latitudes:

- 1-3 m at night
- 5-15 m mid-afternoon

peak solar cycle near equator:

• max. ~36 m

$$I_{L1} = \frac{40.3 \cdot \text{TEC}}{f_{L1}^2} \qquad I_{L2} = \frac{40.3 \cdot \text{TEC}}{f_{L2}^2} = \frac{f_{L1}^2}{f_{L2}^2} I_{L1}$$

$$\rho_{Li} = r + I_{Li} + T + c \left[\delta t_u - \delta t^s \right] + \varepsilon_{\rho_{Li}}$$

ionosphere-free combination:

bias removed; noise increased

$$a\rho_{L1} - b\rho_{L2} = r + T + c\left[\delta t_u - \delta t^s\right] + \varepsilon_{\rho_{IC}}$$
$$= \rho_{IF}$$

″∕ T∪Delft

24

Klobuchar model

 A_2 and A_4 broadcasted with navigation message

~50% reduction RMS range error

- **NeQuick** model (proposed for Galileo)
 - 3-D electron density model
 - One location dependent input parameter (*Az*)
 - *Az* is given for Galileo in broadcast message
 - Slant-TEC is compute by numerical integration along line-ofsight
- Compute corrections from IGS Global Ionosphere Maps (GIM)
 - 2-D grid of VTEC (2.5° latitude x 5° longitude @ 2 hours)
 - Interpolate VTEC to ionospheric point at time of observation
 - Map VTEC to slant direction using mapping function

- 9 km (poles) 16 km (equator)
- Dry gases and water vapor
- Recall: non-dispersive, i.e. refraction does not depend on frequency
- Propagation speed lower than in free space: apparent range is longer (~2.5 – 25 m)
- Same phase and group velocities

$$T_{\rho_{L1}} = T_{\rho_{L2}} = T_{\phi_{L1}} = T_{\phi_{L2}} = T$$

• Refractivity $N = (n-1) \times 10^6$

$$N = N_d + N_w$$

$$T = 10^{-6} \int N(l) dl = 10^{-6} \int [N_d(l) + N_w(l)] dl = T_d + T_w$$

$$N_d \approx 77.64 \frac{P}{T}$$

 $N_w \approx 3.73 \cdot 10^5 \frac{e}{T^2}$

- *P* : total pressure [mbar]
- T : temperature [K]
- e : partial pressure water vapor [mbar]

if known \rightarrow refractivity known

Í U Delft

Saastamoinen model:

zenith dry and wet delays calculated from temperature, pressure and humidity (measurements or standard atmosphere), height and latitude

- Hopfield model: dry and wet refractivities calculated
- Dry delay in zenith direction 2.3 2.6 m at sea level
 → can be predicted with accuracy of few mm's
- Wet delay depends on water vapor profile along path, 0 80 cm
 → accuracy of models few cm's
- If no actual meteorological observations available (standard atmosphere applied): total zenith delay error 5 10 cm

Signal propagation errors: summary

		ionosphere	troposphere
height		50 – 1000 km	0 – 16 km
variability		diurnal, seasonal, solar cycle (11 yr), solar flares	low
zenith delay		meters – tens of meters	2.3 – 2.6 m (sea level)
	30º	1.8	2
obliquity factor	15º	2.5	4
	3º	3	10
modeling error (zenith)		1 - >10 m	5 – 10 cm (no met. data)
dispersive		yes	no

all values are approximate, depending on location and circumstances

Homework exercise:

- make plots of the different mapping functions (page 173 Misra and Enge) as function of the elevation angle (ranging from 0 – 90°)
- compare them with each other AND with the obliquity factor of the ionosphere delay (slide 22)
- try to explain the differences
- more details: see assignment on blackboard

Summary and outlook

• GPS measurements and error sources

Next: Position, Velocity and Time (PVT) estimation

