Acoustic seafloor mapping systems

September 14, 2010

1

Delft Institute of Earth Observation and Space Systems

Delft University of Technology

Acoustic seafloor mapping techniques

- Single-beam echosounder (since 1920s)
- sidescan sonar (since 1960s)

ightarrow

. . .

• multi-beam echosounder (since 1970s)

The single-beam echosounder (SBES)

 \underline{Ct} H =

- Signal duration *T* : ~0.1-1 ms
- Beam width (angular aperture) β : ~10°
- Frequency *f* : ~10-500 kHz
- Source level *SL* : 200-230 dB

Transducer directivity pattern Beam width β

Circular:

$$\beta = 65 \frac{\lambda}{d}$$

Rectangular:

$$\beta_{1,2} = 50 \frac{\lambda}{L_{1,2}}$$

Modern digital single beam sounder: effect of frequency choice (38 kHz or 200 kHz)

Single-beam echo sounder Transmission sequence

$$T_R > \frac{2H}{c} + T + \delta T$$

or

$$T_{R} > \frac{2nH}{c} + T + \delta T$$

TUDelft

Single-beam echo sounder Measurement resolution

• Vertical resolution:

$$\delta z = \frac{cT}{2}$$
 , $\delta z = \frac{c}{2B}$

• Horizontal resolution:

$$\delta x = 2 \tan\left(\frac{\beta}{2}\right) H \approx \beta H$$

Horizontal resolution shallow water

Horizontal resolution - continued shallow water

Horizontal resolution - continued deeper water - same beam width

∕ Ľ∪Delft

Single-beam echo sounder **Echo formation**

Assumptions:

- A flat and horizontal seafloor
- A conical directivity pattern •
- Only echo from water-seafloor interface •

a)
$$t_0 = 2H/c$$
 : impact point
b) From $t = t_0$ to $t = t_0 + T$:
 $A = \pi r_e^2 = \pi (R^2 - H^2) \approx \pi H c (t - t_0)$
c) From $t = t_0 + T$ to t_{max} :
 $A = \pi (r_e^2 - r_i^2) = \pi \left(R^2 - \left(R - \frac{cT}{2} \right)^2 \right) \approx \pi H c T$
d) After $t_{max} = t_0 \sqrt{1 + \tan^2(\beta/2)} \approx t_0 \left(1 + \frac{\beta^2}{8} \right)$
 $A = \pi (r_{e,max}^2 - r_i^2)$

with $r_{e,\max} = H \tan(\beta/2) \approx H\beta/2$ **TUDelft**

Single-beam echo sounder Echo formation, continued

short-pulse or pulse-limited regime:

$$t_{\rm max} > t_0 + T$$

long-pulse or beam-limited regime:

$$t_{\max} < t_0 + T$$

Modified expressions for active area, see lecture notes!

Exercise handed out last lecture

Consider the following situation: We are taking measurements with a multi beam echo sounder system. The sound speed profile in the water column is as follows:

Take for the density in water column of 1g/cm3 The sediment is a clay sediment (sound speed of 1470 m/s, density in the sediment of 1.2 g/cm3)

- a. Calculate for a sound ray emitted at an angle of 22.1 degrees with the horizontal, the angle of the ray at the bottom.
- b. What is the reflection coefficient?
- c. What happens to the sound if it arrives at the bottom, taking your above answers into account.

13

September 14, 2010

Exercise handed out last lecture, contn'd

• Step 1: make a sketch of the situation

• Step 2: Determine angles

 $c_1 = 1460 \text{ m/s}, \rho_1 = 1 \text{ g/cm}^3$

 $c_2 = 1500 \text{ m/s}, \rho_1 = 1 \text{ g/cm}^3$ $c_3 = 1470 \text{ m/s}, \rho_1 = 1.2 \text{ g/cm}^3$

$$\theta_2 = \operatorname{a} \cos\left(\left(\frac{c_2}{c_1}\right) \cos \theta_1\right) = \operatorname{a} \cos\left(\frac{1500}{1460} \cos 22.1\right) = 17.8^\circ$$

$$\theta_3 = \operatorname{a} \cos\left(\left(\frac{c_3}{c_2}\right) \cos \theta_2\right) = \operatorname{a} \cos\left(\frac{1470}{1500} \cos 17.8\right) = 21.1^\circ$$

or
$$\operatorname{a} \cos\left(\left(\frac{c_3}{c_1}\right) \cos \theta_1\right) = \operatorname{a} \cos\left(\frac{1470}{1460} \cos 22.1\right) = 21.1^\circ$$

September 14, 2010

Exercise handed out last lecture, contn'd

• Step 3: make a sketch of the reflection coefficient

What is the situation, do we have an angle of intromission or a critical angle?

-> The sound speed in the sediment is lower than that in the water column directly above the sediment: no critical angle -> $(\rho_2 c_2 = 1500) > (\rho_3 c_3 = 1470 x 1.2 = 1764)$, i.e., we have an angle of intromission

September 14, 2010

Exercise handed out last lecture, contn'd

• Step 4: What is the reflection coefficient

Based on the previous analysis we expect a reflection coefficient of 0.

Check:

$$R = \frac{\frac{\rho_3 c_3}{\sin \theta_3} - \frac{\rho_2 c_2}{\sin \theta_2}}{\frac{\rho_3 c_3}{\sin \theta_3} + \frac{\rho_2 c_2}{\sin \theta_2}} = \frac{\frac{1.2x1470}{\sin 21.1} - \frac{1500}{\sin 17.8}}{\frac{1.2x1470}{\sin 21.1} + \frac{1500}{\sin 17.8}} = 0$$

- SBES with an opening angle of 10 degrees
- 4000 m of water depth

What is the horizontal resolution?

$$r_{e} = \frac{H\beta}{2} = \frac{4000x\pi x10}{2x180} = 349 \text{ m}$$

$$\delta x = 698 \text{ m}$$

$$A = \pi r_{e}^{2} = 0.4 \text{ km}^{2}$$

Beam footprint

Single-beam echo sounder Maximum operating range

- Water depth: 5 km
- Dominant noise source: self noise
- Receiving bandwidth: 500 Hz
- Ship speed: 15 knots
- Echo-sounder: circular transducer with an area of 400 cm²
- SNR should be at least 10 dB

Required specifications for the echo sounder, its frequency f in particular?

Single-beam echo sounder

Maximum operating range, continued

$$SNR = EL - BGL$$
 with $EL = SL - PL$
 $BGL = NL_W - DI$

$$DI = 10^{10} \log \frac{4\pi A}{\lambda^2} \text{, with } A = 400 \text{ cm}^2, DI = 19.5 \text{ dB at } 20 \text{ kHz}$$

$$SL = 170.8 + 10^{10} \log P + DI$$
For $P = 50$ Watt: $SL = 207$ dB re 1 µPa at 20 kHz.
$$NL_W = NL + 10^{10} \log W \text{ with } NL = 33 + 1.8v - 20^{10} \log \left(\frac{1}{10}\right)$$

 NL_w amounts to 82.6 dB at 20 kHz

2

Single-beam echo sounder Maximum operating range, continued

$PL = 60 + 20^{10}\log(2H) + 2\alpha H + BL$

$$BL = -20^{10} \log \frac{\rho_2 c_2 - \rho_1 c_1}{\rho_2 c_2 + \rho_1 c_1}$$

Clay	: <i>BL</i> = 22 dB
Coarse sand	: <i>BL</i> = 7.7 dB

Single-beam echo sounder Maximum operating range, continued

The sidescan sonar system

Signal duration *T* : ~less than 0.1 ms
Beam width (angular aperture) β : ~1° in horizontal plane, ~85° in vertical plane
Frequency *f* : several 100 kHz

Transmission sequence:

Footprint:

Sidescan sonar Image reconstruction

Measurements consist of backscattered intensity as a function of time.

For a flat seafloor:

$$y = \sqrt{R^2 - H^2} = \sqrt{\frac{c^2 t^2}{4} - H^2}$$

Sidescan sonar Echo formation

Sidescan sonar resolution

″uDelft

Sidescan sonar coverage

To ensure 100 % coverage:

$$\delta x = H\beta$$

(insonified strip is narrowest near vertical)

$$\delta x = v T_R$$

(sonar distance between two pings)

$$T_R = \frac{2R_{\max}}{c}$$

$$v \le \frac{cH\beta}{2R_{\max}} = \frac{c\beta}{2}\cos\theta_{\max}$$

(i.e., 100 % coverage condition independent of *H*)

Sidescan sonar Examples

Multi-beam echo sounders (MBES) simultaneous measurement of bathymetry and backscatter

- Deep water systems: operating at *f* ~ 12 kHz. The large dimensions of the transducer array limits their installation to deep-sea vessels.
- Shallow water systems: operating at $f \sim 100-200$ kHz. Mapping of the continental shelf.
- High-resolution systems: operating at *f* ~ 300-500 kHz. Local studies (shipwreck location, inspection of underwater structures). Small size allows for installation on small ships, tow fishes or autonomous underwater vehicles (AUV).

MBES

transmission and reception arrays

Transmission (determines along-track resolution δx) **Reception (using beamforming)** (determines across track resolution δy)

MBES

bathymetry (topography) measurement

Joint measurement of time *t* and angle θ

MBES imaging

Combining time signals after beamforming:

Compared to SSS:

backscatter pixels are now at the correct position because of bathymetry measurement capability !!!

MBES

bathymetry measurement errors

Errors in range R:

$$\delta z_{R} = \delta R \cos \theta$$
$$\delta y_{R} = \delta R \sin \theta$$

Errors in angle θ :

 $\delta z_{\theta} = R \sin \theta \, \delta \theta = H \tan \theta \, \delta \theta$ $\delta y_{\theta} = R \cos \theta \, \delta \theta = H \, \delta \theta$

Prediction of bathymetry measurement accuracy with MBES is an important research item !!!

Types of errors:

- Errors in the acoustic measurement itself (acoustic noise, non-stable backscattered signal);
- Movements of the support platform (finite accuracy of the attitude sensors);
- Inaccuracies in sound speed corrections.

MBES Refraction correction

Refraction correction, continued

1 1

$$C(z) = C_1 + g z \quad \text{with } c(H) = c_2$$

$$t = \int \frac{ds}{c(z)} \quad \text{, with } ds = \sqrt{dy^2 + dz^2} \quad \text{and } dz = \tan \varphi \, dy \quad \text{: } ds = dz / \sin \varphi$$
Snell's law:
$$\frac{\cos \varphi_1}{c_1} = \frac{\cos \varphi(z)}{c(z)} = \frac{\cos \varphi(z)}{c_1 + gz} \quad \text{or } dz = \frac{c_1}{g} \frac{\sin \varphi}{\cos \varphi_1} d\varphi$$

$$t = \int_{\varphi_1}^{\varphi_2} \frac{1}{c_1} \frac{\cos\varphi_1}{\cos\varphi} \frac{1}{\sin\varphi} \frac{c_1}{g} \frac{\sin\varphi}{\cos\varphi_1} d\varphi = \frac{1}{g} \int_{\varphi_1}^{\varphi_2} \frac{1}{\cos\varphi} d\varphi = \frac{1}{g} \ln \frac{\tan\left(\frac{\pi/2 - \varphi_2}{2}\right)}{\tan\left(\frac{\pi/2 - \varphi_1}{2}\right)}$$

Refraction correction, continued

Along track resolution

 $\delta x = R \theta_L$ for bathymetry & imaging

Across track resolution

For imaging:
$$\delta y = \frac{cT}{2\sin\theta} \left(\delta y = \sqrt{HcT} \text{ for } \theta \to 0^{\circ} \right)$$

For bathymetry: $\delta y = \frac{H}{\cos^2\theta} \theta_T - \delta y = \frac{cT}{2\sin\theta}$

MBES

Repetition period and coverage

$$v \le \frac{c\,\theta_L}{2}\cos\theta_{\max}$$

<u>Global mapping of the deep oceans (H = 4 km)</u>

 $\theta_{\rm max} = 75^{\circ}, \ \theta_{\rm L} = 1.5^{\circ}$

v: 5 m/s or 10 knots (100 % coverage)Swathe: $L = 2H \tan \theta_{max} = 30 \text{ km}$ Area covered per second: $vL = 0.15 \text{ km}^2/\text{sec}$ 13000 km² per daySurface of Earth's deep oceans: $350 \times 10^6 \text{ km}^2$

Required for global mapping: 2.7x104 days = 74 years With 50 deep water MBES systems (situation in 2002): ~**1 year**

A typical MBES result

