Porous flow, general

Chapter 5

ct4310 Bed, Bank and Shoreline protection

H.J. Verhagen

June 3, 2012

Faculty of Civil Engineering and Geosciences Section Hydraulic Engineering

Delft University of Technology

Introduction

- flow through granular medium (sand, pebbles)
- two aspects are relevant:
 - pressure
 - drag
- natural filters and geotextiles

Examples of loads due to porous flow

June 3, 2012

basic equations

Navier-Stokes

$$\frac{\partial u}{\partial t} + u \frac{\partial u}{\partial x} + w \frac{\partial u}{\partial z} = -\frac{1}{\rho} \frac{\partial p}{\partial x} + v \frac{\partial^2 u}{\partial z^2} - \frac{\partial \overline{u'^2}}{\partial x} - \frac{\partial \overline{u'w'}}{\partial z}$$

Filter velocity

$$u_f = \frac{1}{A} \iint_A u \, dA = n \cdot u \qquad \left(n = \frac{V_P}{V_T}\right)$$

Combine terms

$$\frac{1}{\rho g} \frac{\partial p}{\partial x} = i = a u_f + b u_f |u_f| + c \frac{\partial u_f}{\partial t} \quad \text{with:} \quad a = \alpha \frac{(1-n)^2}{n^3} \frac{\nu}{g d_{(n)50}^2}$$
Forchheimer equation =0 for $b = \beta \frac{(1-n)}{n^3} \frac{1}{g d_{(n)50}}$
stationary flow

June 3, 2012

velocities, gradients and averaging

June 3, 2012

relation between filter velocity and gradient for various materials

June 3, 2012

relation between velocity and pressure

$$u_f = k(i)^{\frac{1}{p}}$$

k permeability in m/s of porous material

for p=1 Darcy's law p=2 Turbulent flow

June 3, 2012

values of k for various materials

Material	d ₅₀ (< 63.10 ⁻³ m) or d _{n50} (m)	Permeability, k (m/s)	Character of flow
Clay	$< 2.10^{-6}$	$10^{-10} - 10^{-8}$ $10^{-8} - 10^{-6}$ $10^{-6} - 10^{-3}$ $10^{-3} - 10^{-1}$ $10^{-1} - 5.10^{-1}$ $5.10^{-1} - 1$	laminar
Silt	$2.10^{-6} - 63.10^{-6}$		laminar
Sand	$63.10^{-6} - 2.10^{-3}$		laminar
Gravel	$2.10^{-3} - 63.10^{-3}$		transition
Small rock	$63.10^{-3} - 0.4$		turbulent
Large rock	0.4 - 1		turbulent

June 3, 2012

laminar flow

use pressure head instead of pressure

Darcy relations become

 $u_{f} = -k_{x} \frac{\partial h}{\partial x} \qquad w_{f} = -k_{z} \frac{\partial h}{\partial z}$ $\frac{\partial u_{f}}{\partial x} + \frac{\partial w_{f}}{\partial z} = 0$

continuity equation is

combining results in Laplace equation

June 3, 2012

 $h = z + \frac{p}{\rho_w g}$

groundwater flow under a caisson

Flow force

$$F_f = \rho_w g i = \rho_w g \frac{\partial h}{\partial x}$$

This is the force, caused by the flow, acting on the grains. Sometimes also called flow pressure. However, dimension is N/m³ !!

pressures in case of an impervious bed protection

flow net and pressures under an impervious layer on a slope

pressures under impervious slope protection

$$H = \frac{h_1}{\pi} \arccos \left[2 \left(\frac{h_1 + d \cos \alpha}{h_1 + h_2} \right)^{\frac{\pi}{\arctan(\cot \alpha) + \pi/2}} - 1 \right]$$

June 3, 2012

simple stability of a block

June 3, 2012

stability of impervious layer on slope

June 3, 2012

shear and uplift

 $f\left[\left(\rho_{m}-\rho_{w}\right)g\,d\,\Delta x\cos\alpha-H\rho_{w}g\,\Delta x\right]$ $\geq \left(\rho_{m}-\rho_{w}\right)g\,d\,\Delta x\sin\alpha$

$$\frac{H}{\Delta d} = \frac{f\cos\alpha - \sin\alpha}{f}$$

$$(\rho_m - \rho_w)g d\Delta x \cos \alpha \ge H \rho_w g \Delta x \longrightarrow \frac{H}{\Delta d} = \cos \alpha$$

heave and piping under a structure

$$\rho_{w} g i \approx (1 - n) \left(\rho_{g} - \rho_{w} \right) g$$
$$h_{u} - h_{t} \leq \frac{1}{\gamma} d \frac{\rho_{s} - \rho_{w}}{\rho}$$

/

 ${\mathcal W}$

piping behind a sheet piling

Phase 2 Beginning of heave

Phase 3 Progress of pipe formation

Phase 4 Complete piping and collapse

June 3, 2012

Bligh and Lane

 $\frac{\Delta h_c}{L} \leq \frac{1}{C_{creep}}$

water and grains (static)

water and grains (dynamic)

stress at bottom: wet sand: 1*2000*g=20 kN/m² water: 2*1000*g = 20 kN/m²

effective grain stress: $\sigma' = \sigma - p = 20-20 = 0 \text{ kN/m}^2$

eq. 5.9:
$$F_f = \rho_w g i = \rho_w g \frac{\partial h}{\partial x}$$

= 1000*10*1/1 = 10 kN/m³ which compensates effective weight of grains under water

Sellmeijer

porous flow in a dike

June 3, 2012

forces on a slope with porous flow

$$\tan \phi \geq \left[\frac{\sin \alpha + i \cos(\alpha - \theta)}{\cos \alpha - i \sin(\alpha - \theta)}\right]$$

for porous flow (*i*=0) this gives: $\phi \ge \alpha$

flow gradients and micro-stability

seepage parallel to the slope $\tan \phi \ge \frac{\sin \alpha + \sin \alpha}{\cos \alpha} \longrightarrow \tan \phi \ge 2 \tan \alpha$ seepage perpendicular to the slope $\tan \phi \ge \frac{\sin \alpha}{\cos \alpha - i}$

overall assumption: there is no cohesion

June 3, 2012

macro stability of slopes

F-values for various slip circles with one centre point

June 3, 2012

critical slip circles with bad soil layer

June 3, 2012

slip circle with high pore pressures

a "cut-off" slip circle

June 3, 2012

TUDelft

flow under gate

various options of load reduction at barrier

with downstream waterlevel

Percentage of total flow compared with case A

