
1

Delft University of Technology
Delft University of Technology

Time domain models
Course: Wb2301

Lecture 6

Erwin de Vlugt

March 16 2010



March 16 2010 2

Delft University of Technology

Contents

• Distortion from Sample and hold circuits
• The Z-transformation
• Discrete time-domain identification
• Model structures and parameterization
• Open and closed loop identification using

discrete models
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Signal Reconstruction
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ZOH FRF
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Bode plot of Zero Order Hold circuit
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Signal Distortion
• Signal distortion due to sampling

and hold circuit

• Reduce distortion by increasing
sampling frequency

• No signal transfer at the Nyquist
frequency (ωh = 1

2ωs and sample
frequency (ωs)
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Z-transformation

X(z) = Z{x[n]} =
∞
∑

n=−∞
x(n)z−n

where n is an integer and z is, in general, a complex number:

z = Aejφ

= A(cosφ + jsinφ)

where A is the magnitude, and φ is the angle of z
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Z-transformation

Example:

[x(1) x(2) x(3) ... x(N)] = [1 2 3 0 0 ... 0]

X(z) = 1z0 + 2z−1 + 3z−2
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Continuous to discrete poles-zeros

z = es∆t

= eRe(s)∆teIm(s)∆t
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Z-Laplace Mappings

Inverse mapping

s =
1

∆t
ln(z)

Using the bilinear (Tustin) approximation (1st order Taylor coeff.):
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∆t
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2 + s∆t
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Example
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Time domain identification

1. Digital acquisition: signals are represented by
discrete numbers (sampling)

2. Systems are described by polynomials in the
z-domain
• Deterministic and stochastic parts can be

separated (noise models)
• Appropriate for nonlinear identification
• Disadvantage: a priori knowledge required
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Time domain identification

• Purpose
Capture system properties by a limited number of
parameters (n < N ) These n parameters (indirectly!)
represent system dynamics, i.e. physical properties

• Approach
Discriminate input related response from noise in
output
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Auto-regressive (AR) filter

y(k) =
1

a1z−1 + a2z−2 + . . . + anz−n
u(k)

Describes many physical processes due to feed-

back structure
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Moving Average (MA) filter

y(k) =
(

b0 + b1z
−1 + b2z

−2 + . . . + bnz−n
)

u(k)

Finite time integration structure
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General Model

y(k) = G(z−1)u(k)+H(z−1)e(k)

• white noise e(k)

• goal: estimate G(z−1) from y(k), u(k)



March 16 2010 16

Delft University of Technology

System Identification

• Experimental system data
• Choice of model structure
• Optimization criterion
• Validation
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Finding the best model

System:

y(k) = G0(z
−1)u(k) + H0(z

−1)e(k)

Assume a model (G,H, ǫ) can be found such that:

y(k) = G(z−1)u(k) + H(z−1)ǫ(k)

Then the model error is:

ǫ(k) = H−1(z−1)
[

y(k) − G(z−1)u(k)
]
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Obtaining the model

System: G0(z
−1), H0(z

−1)

Model: G(z−1), H(z−1)

ǫ(k) = H−1(z−1)
[

y(k) − G(z−1)u(k)
]

Optimal fit :

If G(z−1) ≈ G0(z
−1)

and H(z−1) ≈ H0(z
−1)

then ǫ(k) ≈ e(k)
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Least squares (LS) Criterion

V (θ)N = min
N
∑

k=1

ǫ(k, θ)2

V cost function
θ model parameter vector
ǫ model error
N number of data points

For the optimal solution: ǫ → e
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Finite Impulse Response (FIR) structure

y(k) = B(z−1)u(k) + e(k)

e(k) = y(k) − B(z−1)u(k)

An FIR model is linear in its parameters.
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Output Error (OE) structure

y(k) =
B(z−1)

F (z−1)
u(k) + e(k)

e(k) = y(k) −
B(z−1)

F (z−1)
u(k)

An OE model is nonlinear in its parameters.
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ARX structure

y(k) =
B(z−1)

A(z−1)
u(k) +

1

A(z−1)
e(k)

e(k) = A(z−1)y(k) − B(z−1)u(k)

An ARX model is linear in its parameters.



March 16 2010 23

Delft University of Technology

ARMAX structure

y(k) =
B(z−1)

A(z−1)
u(k) +

C(z−1)

A(z−1)
e(k)

e(k) =
A(z−1)

C(z−1)
y(k) −

B(z−1)

C(z−1)
u(k)

An ARMAX model is nonlinear in its parameters.
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Box-Jenkins (BJ) structure

y(k) =
B(z−1)

F (z−1)
u(k) +

C(z−1)

D(z−1)
e(k)

e(k) =
D(z−1)

C(z−1)
y(k) −

D(z−1)B(z−1)

C(z−1)F (z−1)
u(k)

An BJ model is nonlinear in its parameters.
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Optimizing the criterion (ARX)

ǫ(k) = A(z−1)y(k) − B(z−1)u(k)

with na, nb are the model orders according to:

na : A(z−1) = 1 + a1z−1 + . . . + anaz−na

nb : B(z−1) = b1 + b2z−1 . . . + bnbz
−nb+1

Structured regression format:

ǫ(k) = y(k) + [A(z−1) − 1]y(k) − B(z−1)u(k)

= y(k) − φ(z−1)θ

where θ = [b1 b2 ... bn a1 a2 ... an]T

φ = [U − Y ]
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Optimizing the criterion (ARX)

V (θ)N = min

N
∑

k=1

ǫ(k, θ)T ǫ(k, θ) = ǫ(k)T ǫ(k)

δV (θ)

δθ
= [y(k) − φθ]T φ = 0

θ = y(k)Tφ[φTφ]−1
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Choice of model structure

Use system knowledge
• Existence of feedback loops

• Noise sources
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Closed loop system
Goal: estimate y(k)

u(k)

Take:

H1(z
−1) =

N1

D1

H2(z
−1) =

N2

D2

y =
H1H2

1 + H1H2
u +

1

1 + H1H2
e

=
N1N2

D1D2 + N1N2
u +

D1D2

D1D2 + N1N2
e

=
B

A
u +

C

A
e

This system has an ARMAX structure.
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Analysis

Frequency response:

z−n = e−ns∆t with s = j2πf (f = [0...
fs

2
])

Impulse response:

u(k) = m with m = 1 for k = 0

m = 0 for k > 0
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Example
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Closed loop algorithms

H2 q
-1 y k

e k

H1 q
-1 u kr k

Goal: estimate H2

1. Two stage method

2. Coprime factorization method
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Two stage

System transferfunctions:

u(k) =
H1

1 + H1H2
r(k) +

H1

1 + H1H2
e(k)

y(k) =
H1H2

1 + H1H2
r(k) +

1

1 + H1H2
e(k)

Two stage:

1. Open loop from r(k) to u(k)

2. Simulate a ’noise free’ input u∗(k)

3. Open loop estimate from u∗(k) to y(k) gives the estimated system
H2

Drawback: only for stable (sub)systems because of the simulation step
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Coprime factorization

System transferfunctions:

u(k) =
H1

1 + H1H2
r(k) +

H1

1 + H1H2
e(k)

y(k) =
H1H2

1 + H1H2
r(k) +

1

1 + H1H2
e(k)

Coprime factorization:

1. Open loop from r(k) to u(k) gives H1

1+H1H2

2. Open loop from r(k) to y(k) gives H1H2

1+H1H2

3. then, y(k)
r(k)

r(k)
u(k) gives H2

Drawback: high order because poles and zeros do not cancel out
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Summary

• Time domain models use only a few
parameters (w.r.t. FRFs)

• Model structure required and must be
selected a priori

• Optimum order must be selected
• Parameterization by minimizing an error

criterion
• Direct simulation/validation
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