
BIOMEDICALBIOMEDICAL
ENGINEERING DESIGNENGINEERING DESIGN

WB2308WB2308



LECTURE STRUCTURE
1. INTRODUCTION

CLINICALLY DRIVEN PROBLEM ANALYSIS
ASSIGNMENT

3.  BASIC REQUIREMENTS: ORTHOPAEDICS
4.  PROBLEM ANALYSIS: STUDENT PRESENTATIONS
5.  DESIGN ENGINEERING: THE CREATIVE PROCESS

6.  DESIGN ENGINEERING PRINCIPLES

2.  BASIC REQUIREMENTS: REHABILITATION

7. EXAMPLES: REHABILITATION
ORTHOPAEDICS





Presentation overviewPresentation overview

Background
History of pneumatic actuation
Project goals
Methods
Results
Concluding remarks



BackgroundBackground

Many different types of prostheses 
available
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WILMER, Netherlands
Hosmer Dorrance, USA
Otto Bock Healthcare GmbH
Motion Control, USA



BackgroundBackground

Many different types of prostheses 
available
But all fail to comply with the basic 
requirements
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RSL-Steeper, UK

Centri AG, Sweden

Otto Bock Healthcare GmbH

VASI Inc., Canada



BackgroundBackground

Disadvantages electric 
actuation:
– Mass
– Speed
– Vulnerable
– Size

RSL-Steeper, UK



BackgroundBackground

Pneumatic actuation:
– Light
– Fast
– Reliable
– Small
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Dalish, 1877
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History of pneumatic actuationHistory of pneumatic actuation

Dates back to 1877!
Boosted in mid 20th

century: 
Thalidomide!

Heidelberg, 1949+



History of pneumatic actuationHistory of pneumatic actuation

Steeper, 1964



History of pneumatic actuationHistory of pneumatic actuation

Otto Bock, 1970+



History of pneumatic actuationHistory of pneumatic actuation

Edinburgh, 1963 - 1977



History of pneumatic actuationHistory of pneumatic actuation

Never successful:
– Gas containers
– Gas consumption
– Overall mass
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History of pneumatic actuationHistory of pneumatic actuation



Project goalsProject goals

Re-assessment pneumatic actuation:
– Light?
– Fast?
– Reliable?
– Small?



MethodMethod

Minimize gas consumption by
– System choice
– Reduction of friction losses
– Reduction of dead space
– Supply pressure

Prototypes
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‘Standard’ operation
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‘Bi-phasic’ operation
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Method Method –– system choicesystem choice

‘Bi-phasic’ operation
pinching motor
pinching spring

closing spring
prehension motor

locking mechanism



Method Method –– system choicesystem choice

Glove compensation
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Method Method –– system choicesystem choice

0 max. hand opening width
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Pinching Phase Mechanism



Method Method –– system choicesystem choice
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Method Method –– system choicesystem choice

Thumb tip displacement
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Method Method –– system choicesystem choice

Locking mechanism:
– Continuously adjustable
– Friction free
– Rigid
– Fast switching
– Low energy
– No backlash
– Quiet
– Overload protection



Method Method –– system choicesystem choice

Logical circuit

pinching motor

locking motor

object sensor

prehension motor
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state sensor pinching motor

state sensors
locking motor
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Pivot point friction:
– Journal bearings
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Method Method –– friction lossesfriction losses

Pivot point friction:
– Ball bearings
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Method Method –– friction lossesfriction losses

Pivot point friction:
– Flexible pivot

2
r

z 4
dF

T
π⋅

ϕ⋅⋅
=



Method Method –– friction lossesfriction losses

Pivot point friction:
– Gas bearings
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Method Method –– friction lossesfriction losses

Pivot point friction assumptions:
all pivots are loaded with the same force Fr

the axis diameter d is the same for all pivot points
the rotation angle ϕ = 30°, to be travelled in Δt = 0.1 s



Method Method –– friction lossesfriction losses

Pivot point friction:
– Journal bearings Tf = 0.05•Fr•d
– Ball bearings Tf ~ 0.0018•Fr•d
– Flexible pivots Tf = 0.013•Fr•d
– Gas bearings Tf = 1•10-7•Fr•d2



Method Method –– friction lossesfriction losses

Pneumatic seal friction:
– Piston motor
– O-ring seals



Method Method –– friction lossesfriction losses

O-ring seal friction: [ ] [ ]AfLfF hcf ⋅+⋅=
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Method Method –– dead spacedead space

Qp = ρ•Vds

Qp friction losses?

Qp leakage?



Method Method –– dead spacedead space
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Method Method –– supply pressuresupply pressure
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Method Method –– supply pressuresupply pressure
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Method Method –– supply pressuresupply pressure
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Method Method –– supply pressuresupply pressure

Ps, opt = 1.2 MPa

Independent of:
Δt, L, Fs, and x
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Results IResults I

Addition of check valves
Pneumatic switch
Glove compensation 



Results IResults I

Logical circuit

pinching motor

locking motor

object sensor

prehension motor
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Logical circuit
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Logical circuit



Results IResults I

‘Old timer’ check valve
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Pneumatic switch
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Results IResults I

Endurance test:  77000 cycles



Results IResults I



Method Method –– prototype IIprototype II

Glove compensation
Mass of frame
Pneumatical switch
Check valve
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Method Method –– prototype IIprototype II

0 mm10
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Method Method –– prototype IIprototype II

Δp
control

Δp
control

patm patm patm

p
hand mechanism

p
supply

I II III IV

p

control
Δp

patm

supply

hand mechanism
p

p
supply

hand mechanism

atmppatm

p

Δp
control

a

b

c



Method Method –– prototype IIprototype II

Pneumatic relay:

- Ø 3.5 x 8.15 mm

- ΔP = 0.4 MPa

- Q = 74.2 ltr/hr

- m = 0.66 g



Method Method –– prototype IIprototype II



Method Method –– prototype IIprototype II

Pneumatic switch:

- Ø 3.0 x 4.3 mm

- F = 0.6 N

- Q = 97.0 ltr/hr

- m = 0.19 g
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Method Method –– prototype IIprototype II

Check valve:

- Ø 1.5 x 2.8 mm

- ΔP = 48 kPa

- Q ≥ 120.0 ltr/hr

- m = 0.05 g



Results IIResults II



Concluding remarksConcluding remarks

Pneumatic actuation excels electrical 
actuation:
– Low in mass
– Fast
– Reliable
– Small 



Concluding remarksConcluding remarks

Clinical evaluation
Pneumatic servo mechanism
Miniature pneumatic components 
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