System Identification & Parameter Estimation

Wb2301: SIPE
Lecture 9: Physical Modeling, Model and Parameter Accuracy
Erwin de Vlugt, Dept. of Biomechanical Engineering (BMechE), Fac. 3mE
April 26 2010
Contents

• Parameter estimation in time domain
 • resume previous lecture(s)

• Overview of an experiment
 • Basic steps in an ‘ideal’ experiment

• Parameter estimation in frequency domain:
 • Non-parametric models: frequency response function (FRF)
 • Can be derived from ‘non-parametric’ time-domain models
 • Models with physical parameters
 • Transfer function of model (as function of Laplace operator \(s \))
 • Model structure & model parameters: linear models
 • Optimization algorithms: adapt model parameters for best fit in frequency domain
Parameter estimation in time-domain

- ‘Non-parametric’ models:
 - ARMA, OE, Box-Jenkins, etc.

- Models with physical parameters
 - Input-output data, simulation of model (time domain)
 - Model structure & model parameters:
 - linear and non-linear models
 - Optimization algorithm:
 - adapt model parameters for best fit to simulation

- Note that ARX is a special case!
 - ARX is ‘linear in the parameters’: no simulation/optimization required!
System identification & parameter estimation

\[u(t), y(t) \rightarrow U(\omega), Y(\omega) \]

- Non-parametric model
- Parametric models (ARX, ARMA, etc.)

\[\text{Frequency Response Function (FRF)} \]
System identification & parameter estimation

System identification

Parameter estimation

Model

Output signal

Predicted output

Input signal

Unknown system

Output signal

Unknown system

Input signal
Quantification of validity

- Variance-Accounted-For (VAF) values: How much of the variance in the data can be explained by the model?

\[
VAF = 1 - \frac{\sum_{i=1}^{N} (y(t_i) - \hat{y}(t_i))^2}{\sum_{i=1}^{N} y(t_i)^2}
\]

\[\hat{y}(t_i) = f(\theta, u; t)\]
\[y(t_i), u(t_i): \text{recorded data}\]
Coherence and VAF

- High coherence, low VAF:
 - Linear system, good SNR, wrong model!

- High coherence, high VAF:
 - Linear system, good SNR, good model

- Low coherence, high VAF:
 - Non-linear system, good SNR, good non-linear model

- Low coherence, low VAF:
 - Non-linear system or poor SNR, poor model
Parameter estimation of static and dynamic systems

- Measured data
 - input signal \(\text{x}(k) \)
 - output signal \(\text{y}(k) \)
- Model (linear or non-linear)
 - Predicted output: \(\hat{\text{y}}(k) = \text{f}(\theta, \text{u}(k)) \)
 - \(\theta \): parameter vector
 - \(\Rightarrow \) simulation of the model, depends on \(\theta \) and \(\text{u}(k) \)

- error function
 - \(e(k) = \text{y}(k) - \text{f}(\theta, \text{u}(k)) \)
- criterion function (least squares)
 - \(J(x(k), y(k), \theta) = \sum e(k)^2 \)

- find \(\theta \) which minimizes \(J \)
 - iterative search requires many simulations!
Accuracy of parameter fit

- Single parameter:
 - SEM: ‘Standard Error of the Mean’

- Multiple parameters:
 - Covariance matrix
 - Estimated from Jacobian and residual error
‘Standard error of the mean’ (SEM)

• How accurate can the parameters be estimated?
• Example:
 • Normal distribution of data x_N: μ_x, σ_x
 • Standard Error of the Mean:

\[
\sigma_{\mu_x}^2 = \frac{1}{N} \sigma_x^2 \quad \text{variance of the mean}
\]
\[
\sigma_{\mu_x} = \frac{\sigma_x}{\sqrt{N}} \quad \text{standard error (deviation) of the mean}
\]

• the more data samples to more accurate the estimation of the mean
Co-variance matrix

\[P_\theta \approx \widehat{P}_N = \frac{1}{N} e^T e \cdot \left[\frac{1}{N} J^T J \right]^{-1} \]

\[
\text{Cov} \ \hat{\theta}_N \approx \frac{1}{N} P_\theta
\]

- \(P_\theta \): Parameter co-variance matrix for parameter vector \(\theta_N \)
 - Approximated by \(P_N \) (limited number of data samples \(N \) for estimation)

- \(\text{Cov} \ \theta_N \): Variance of \(P_\theta \)
 - \(\sigma_{\theta_N} = \sqrt{\text{diag}(\text{Cov} \ \theta_N)} \)
Covariance Matrix P_N

$$\hat{\theta}_N = \arg \min_{\theta} V_N(\theta, Z^N)$$

- Z^N: data vector with input vector u and output vector y
- $V_N(\theta, Z^N)$: criterion value

$$V'_N(\theta_N, Z^N) = \frac{\partial V_N(\theta_N, Z^N)}{\partial \theta} = 0$$

- θ^o: True, optimal parameter vector (unknown!)
- Expanding Taylor series (1st order) around θ^o:

$$0 = V'_N(\theta^o, Z^N) + V''_N(\theta^o, Z^N). (\hat{\theta}_N - \theta^o)$$

$$(\hat{\theta}_N - \theta^o) = -[V''_N(\theta^o, Z^N)]^{-1}. V'_N(\theta^o, Z^N)$$

$$\sigma^2_{\hat{\theta}_N} = \frac{1}{N} (\hat{\theta}_N - \theta^o)^2 = \frac{1}{N}. P_N$$
Derivation P_N

$$P_N = V_N'^{-1}.V_N'.V_N^T.V_N'^{-T}$$

$$V_N = e^2$$

$$V_N' = \frac{\partial V_N}{\partial \theta} = J^T e$$

$$V_N'' = \frac{\partial V_N'}{\partial \theta} = J^T J + \frac{\partial J^T}{\partial \theta}.e$$

- e is ‘white noise’ at θ^0, and hence $\partial J^T/\partial \theta = \partial^2 e/\partial \theta^2 \approx 0$
Derivation P_N

- P_N becomes

$$P_N = V_N^{-1}V_N'V_N^T.V_N^{''-T}$$

$$= (J^T J)^{-1}.J^T \left(\sum_{i}^{N} e_i.e_i \right).J.(J^T J)^{-1}$$

$$= \lambda_N.(J^T J)^{-1}.J^T J.(J^T J)^{-1}$$

$$= \lambda_N.(J^T J)^{-1}$$

- Where

$$\lambda_N = \sum_{i}^{N} e_i.e_i = .e^T.e$$
Co-variance matrix

\[
\text{Cov} \hat{\theta}_N = \begin{bmatrix}
\sigma^2_{\theta_1} & \sigma_{\theta_1} \cdot \sigma_{\theta_2} & \cdots & \sigma_{\theta_1} \cdot \sigma_{\theta_M} \\
\sigma_{\theta_2} \cdot \sigma_{\theta_1} & \sigma_{\theta_2}^2 & \cdots & \sigma_{\theta_2} \cdot \sigma_{\theta_M} \\
\vdots & \vdots & \ddots & \vdots \\
\sigma_{\theta_M} \cdot \sigma_{\theta_1} & \sigma_{\theta_M} \cdot \sigma_{\theta_2} & \cdots & \sigma_{\theta_M}^2
\end{bmatrix}
\]

- And \(\sigma_{\theta_1} = \sqrt{\text{cov} \theta_N(1,1)}\), etc.
Matlab demo: parameter accuracy
Basic ‘steps’ in identification scheme

1. Prepare experiment
 • Choose sample frequency, observation time, and number of repetitions
 • Choose/design input signal

2. Perform experiment
 • Perform experiments with care and prevent possible noise sources

3. Analyze results
 • Check linearity! (e.g. coherence)
 • Open-loop or closed-loop algorithms required?
 • Do nonparametric analysis (FRF or ARX/OE/ARMAX)
 • Fit (parametric) model onto data
 • Check residue (should be small and preferably white)
 • Check validity (VAF) and parameter uncertainty (e.g. SEM)
1. Prepare experiment

- **Sample frequency**
 - Should be high enough to ‘see’ all relevant dynamics
 - High sample frequency will give more data (storage!) but will not necessarily give more information!
 - Prevent aliasing

- **Observation time**
 - Determines resolution in frequency domain
 - In general longer is better (as long as system is time-invariant)

- **Number of repetitions**
 - Multiple observations => variations between observations

- **Choose/design input signal**
 - ‘persistently’ exciting => excite all relevant dynamics
 - Prevent leakage
2. Perform experiment

- Perform experiments with care and prevent possible noise sources
 - Electromagnetic interference?
 - Human subjects
 - Unpredictable, to prevent anticipation
 - Clear instruction, no distractions, etc

- Often data cannot be ‘fixed’ afterwards!
3. Analyze results

- Check linearity
 - Calculate coherence
- Open-loop or closed-loop algorithms required?
 - Try to make a block scheme
- Do nonparametric analysis (FRF or ARX/OE/ARMAX e.d.)
 - Bode diagram can give indication of system under investigation
- Fit (parametric) model onto data
 - Do a first check by inspecting the Bode diagram of data and model!

- Check residue (should be small and preferably white)
 - What is not captured with fitted model?
- Check validity of model (VAF) and parameter uncertainty (e.g. SEM)
Options in parameter estimation

Time-domain:

- direct fit using derivatives (HMC: inverse dynamics)
 - Noise is amplified by differentiation

- direct fit using simulation (previous lecture)
 - Requires multiple model simulations:
 a lot of CPU power
 - Can handle non-linear models!
Options in parameter estimation

- Frequency-domain:

 1. FFT, estimation of FRF, estimation of parameters
 - No prior assumptions are needed!
 - Can easily cope with systems in closed-loop
 - Estimates can be biased if (very) much noise is present
 - E.g. depends on number frequency bands used for averaging

 2. OE/ARMAX fit, estimation of parameters
 - In general reasonable fast and accurate
 - Order selection is needed (requires a choice!)
 - Frequency reconstruction desired to estimate the model structure (if system is unknown)
Error function in frequency domain

Simple approach:

$$J(f') = \sum_{f} e(f')^2$$

$$e(f') = H_{est}(f') - H_{mod}(f')$$

- Wrong approach
- Can give severely biased results
Model fit in frequency domain

Dynamic range: absolute errors vary between 10^1 vs 10^{-4}
Model fit in frequency domain

Reliability: coherence varies with frequency
Model fit in frequency domain

Logarithmic frequency axis:
low emphasis on lower frequencies
LogN of Transfer function H

$$H(\omega) = a(\omega) + j.b(\omega)$$

$$= A(\omega).e^{j\phi(\omega)}$$

$$\ln(H(\omega)) = \ln(A(\omega).e^{j\phi(\omega)})$$

$$= \ln(A(\omega)) + \ln(e^{j\phi(\omega)})$$

$$= \ln(|H(\omega)|) + j.\phi(\omega)$$

- Logarithm effects the gain, not the phase!
Error function in frequency domain

\[J(f) = \sum_f e(f)^2 \]

\[e(f) = \sqrt{\frac{1}{f} \cdot \gamma(f) \cdot |\ln(H_{est}(f)) - \ln(H_{mod}(f))|} \]

\[= \sqrt{\frac{1}{f} \cdot \gamma(f) \cdot |\ln(|H_{est}(f)|) - \ln(|H_{mod}(f)|) + i(\varphi(H_{est}(f)) - \varphi(H_{mod}(f)))|} \]

\[\sim \sqrt{\frac{1}{f} \cdot \gamma(f) \cdot (\text{difference in log(gain)} + \text{difference in phase})} \]

\[J(f) = \sum_f \frac{1}{f} \cdot \gamma^2(f) \cdot |\ln(H_{est}(f)) - \ln(H_{mod}(f))|^2 = \sum_f \frac{1}{f} \cdot \gamma^2(f) \cdot \left| \ln\left(\frac{H_{est}(f)}{H_{mod}(f)}\right) \right|^2 \]

weighted by coherence to put more emphasis on reliable frequencies

weighted by 1/frequency to compensate for few data in low frequency region
Error function in frequency domain

Example:
measurements on a mass-spring-damper system

\[J(f) = \sum_{f} e(f)^2 \]

\[e(f) = \sqrt{\frac{1}{f} \cdot \gamma(f) \cdot \left| \ln(H_{est}(f)) - \ln(H_{mod}(f)) \right|} = \sqrt{\frac{1}{f} \cdot \gamma(f) \cdot \ln\left(\frac{H_{est}(f)}{H_{mod}(f)} \right)} \]

\[H_{est}(f) = \frac{S_{uy}(f)}{S_{uu}(f)} \]

\[H_{mod}(f) = \frac{1}{M . s^2 + B . s + K} = \frac{1}{M \cdot (2\pi f)^2 + B \cdot 2\pi f + K} \]
Assignment this week

- Estimate parameters in time and frequency domain
- Compare the results between both approaches

Goal: Show the (dis-)advantages and peculiarities of estimation in both time domain and frequency domain (and compare the two approaches)