Chapter 12. The Prisoner's Dilemma

- Other Dilemmas
- Repeated Games
- Metagames

Generic Games

- Guyer and Rappoport cataloged all the simple games
- Generic games
 - occur when actors have the same strategies and pay-offs
 - have two strategies and two players
 - have symmetric pay-offs
- Only sixteen generic games are possible
- Four of these present particular problems . . .

The Prisoner's Dilemma

- A demonstration of the difference between equilibrium and optimality (Dresher and Flood, RAND, 1950)
- •Two prisoners, convicted of crime
- What happens if they are given the chance to testify against the other?
- Originally told by Tucker.

Bundesarchiv, Bild 102-116 Foto: o.Ang. | Mai 1931

Bundesarchiv, Bild 102-11648 / Author unknown / CC-BY-SA

Stag Hunt Dilemma

- In the stag hunt, two players can cooperate to hunt a stag
- Or, they can defect to hunt a rabbit by themselves
- If anyone defects the stag gets away!
- Another example -- weekend football league

Picture published by GerardM under cc-by-sa license

Chicken Dilemma

- In the prototypical chicken dilemma two rebellious teens race towards each other in the car
- If one flinches and turns away the other wins
- If neither turns away a bad crash happens and both loose

Picture by Editor5807 (cc-by-3.0 license)

Deadlock Dilemma

- In the Deadlock dilemma two parties pretend to negotiate
- In reality, neither party wants a solution . . .
- They only want to appear to be compromising

Picture by Sharon Farmer, released in public domain (USGOV)

Jees. **TU**Delft

6

30 June 2010

This slide does not imply any political statement or view by TU Delft or any past or present employees.

Repeated Games

- Can we restore cooperation through repeated interaction?
- An important class of games, only touched upon in your text
- These games are usually based on infinite series, and some discounting of future prospects
- Discounting could happen because of an expectation of breakdown in cooperation (p), or because we discount our future payoffs (δ)

Infinite Series

Let
$$X = 1 + \delta + \delta^2 + ...$$

Note that
 $(1 + \delta + \delta^2 + ...) = 1 + \delta (1 + \delta + \delta^2 + ...)$
So we can substitute
 $X = 1 + \delta \quad X$
Rearranging
 $X (1 - \delta) = 1$
Therefore
 $X = 1/(1 - \delta)$

More Infinite Series

Recognize that is equivalent to

So substituting

Therefore

$$Y = \delta^{m} + \delta^{m+1} + \delta^{m+2} + \dots$$

$$Y = \delta^{m} (1 + \delta + \delta^{2} + \dots)$$

$$(1 + \delta + \delta^{2} + \dots) = 1/(1 - \delta)$$

$$Y = \delta^{m} / (1 - \delta)$$

Grim Trigger

- Calculate the benefits of a defection at time m
- Assume that the other player now retaliates indefinitely.
- Ψ_{defect} = (cooperation to m)+(one round of temptation payoff) +(defection payoff for m+2 onwards)
- Suppose that defection occurs if the discounted value of continued cooperation falls below the value of a single defection

Network Structure Matters

• Wilhite (2005, see below) shows that cooperation is better sustained in certain network structures

	1 < c < 4/3	4/3 < c < 3/2	3/2 < c < 2	2 < c < 3
Ring	3-cycle:	3-cycle:	stable:	
	87%	85%	52%	all defectors
	cooperators	cooperators	cooperators	
Tree	stable:	some 2-cycles:	2-cycles:	some 2 cycles:
	73%	20%	42%	12%
	cooperators	cooperators	cooperators	cooperators
Grid	stable/2-cycle:	chaotic:	long cycle:	
	68%	35%	22%	all defectors
	cooperators	cooperators	cooperators	

Increasing incentive to defect-

30 June 2010

Wilhite, A. (2005), "PD Games on Networks," Proceedings of Computational Economics and Finance (CEF), accessed online 19 December at: http://cas.uah.edu/wilhitea/papers/pdgames.pdf

Metagames

- Another "solution" to the prisoner's dilemma was proposed by Howard (1971).
- Howard advances a set of meta-strategies based on beliefs and expectations
- Others have suggested the ultimate meta-strategy is to "do unto others"
- Howard's work has now moved into actual mediation and intervention in policy settings
- Other soft operations research techniques will be discussed in a seminar

