Chapter 15. Application to Biology: Evolutionarily Stable Strategies

- Evolution and Rationality
- Trust in Networks

Evolutionary Game Theory

- Players evolve strategy
- Originally proposed by Maynard Smith (1973) for use in evolutionary biology
- Payoffs interpreted in terms of reproductive success
- Animals not rational instead evolutionary pressure drives selection

Evolution and Rationality

- Evolution and rationality result in similar equilibria
- Why? Are they in some manner the same?
- Nobel Prize winner Robert Aumann says they are two different things with a superficial similarity
- Nonetheless, evolution has informed a lot of thinking even about science, technology, economics and industry
- Evolutionary economics

Players and Populations

- Players become populations
- Better than average payoffs for strategies allow them to "invade"
- Key insight that certain strategies are necessary to maintain an evolutionary equilibrium
- Mixed strategies become variations in strategies adopted by individuals
- Evolutionary stable strategy is a mixture which persists over time

Replicator Equation

• System dynamic

 $dx/dt = x (\psi_x - \overline{\psi})$

- Populations grow proportionally; this prevents negative units
- Populations grow in proportion to their success
- Success is measured relative to the population average of other strategies which are present in the system

Trust in Networks Game

- Consider a network of many traders who are randomly paired to play a one shot prisoner's dilemma
- Evaluate two strategies: *trust* and *defect*
- Pay-offs are
 - Cheating > trading > no trading > cheating a cheater > being cheated

">" is the "greater than"-sign, indicating that cheating is more desirable than trading, etc.

Trust in Networks Game

- Suppose there was a costly and noisy signal p, which could be used to identify defectors
- The signal correctly identifies a defector with probability of p > 1/2
- Is there a third strategy possible of *inspecting*?
- The inspector refuses to trade with defectors, but cooperates with trusters and inspectors

Pay-Off Matrix for the Trust in Networks Game

8

30 June 2010

Pay-Off Matrix for the Trust in Networks Game

Two Player, Symmetric Game

- What combination of strategies does this game permit the population?
- Seek solution in terms of frequencies of
 - inspect a
 - trust b
 - defect c

Phase Diagram

30 June 2010

TUDelft

Mixed Strategy as a Function of Signal Quality

12

30 June 2010