Chapter 23. Imputations, Domination, and Stable Sets

- Imputation
- Domination
- Stable Sets

Characteristic Function

- The characteristic function enumerates possible coalitions
- For each coalition, it lists the value created or destroyed

$$\nu(\phi) = 0$$

$$\nu(R) = -4.4$$

$$\nu(C) = -4$$

$$\nu(L) = -1.43$$

$$\nu(RC) = 1.43$$

$$\nu(RC) = 0$$

- What happens of the players refuse to play the game?
- $\boldsymbol{\varphi}$ is the null set. By convention the value of the null set is zero.

Viable Alternative Structure for Representation

 $\nu(\phi) = 0$

$$\nu(R|C,L) = \nu(C|R,L) = \nu(R|C,L) = -1$$

$$\nu(R|C \cup L) = \nu(C|R \cup L) = \nu(R|C \cup L) = 2$$

• Characteristic function with partitions

• Prisoner's dilemma

• Payoff according to the coalition structure of the other players

$$\nu(C \cup L|R) = \nu(R \cup L|C) = \nu(C \cup L|R) = 0$$

$$\nu(R,C,L) = 3$$

∦ T∪Delft

3

1 July 2010

Which Representation is More True?

Normal or Extensive Form

- Shows the process by which outcomes are reached
- May be needed to fully understand the valuation of the game
- Payoffs may be dependent on those not in your coalition
- Endorsed by Straffin

Characteristic Function

- Based on payoffs, which are more fundamental than strategies
- The game may not yet be clear to all players
- Choice of representation may depend upon questions
- Characteristic functions may be useful for encouraging cooperation

What is an Imputation?

- An imputation is a proposed division of resources
- An n-tuple of numbers (for n players) describing how much is awarded to the nth player
- Based on a solution concept and also a characteristic function of a game
- The solution concept we are discussing in this chapter is the von Neumann and Morgenstern *stable set*
- Also known as the *solution*

What is Domination?

In analytical form: An imputation $x = \{x_1, ..., x_n\}$ dominates an imputation $y = \{y_1, ..., y_n\}$ if there is some coalition S such that: i) $x_i > y_i$ for all i in S, and ii) $\sum_{i \in S} x_i \le v(S)$

• **In words:** One imputation dominates the other if all entries are greater, and if the imputation delivers less than or equal to the value of the coalition according to the specified game

Necessary Components of Domination

- requires two sets, one dominated and one dominating
- is dependent on a specific characteristic function
- requires we specify a coalition for whom the imputation dominates

Strange Properties of Domination

- Given two imputations, its possible that neither dominates the other
- Cycles of domination are possible. For individual decision-making we wouldn't like this, but of course domination refers to group decision-making.
- It's possible that every imputation is dominated by another.

Requirements for a Solution to Cooperative Game

- Von Neumann-Morgenstern stable set or solution
- Multiple alternative arrangements should be possible
- Logically distinct ways of solving the problem should be permitted
- All solutions entertained should be equally good
- Any solution entertained should be better than those rejected

Issues with the Stable Set

- Every imputation possible may be in one of the available stable sets;
- This makes it hard to prove that the stable set has predictive validity
- There may be no stable set possible
- It may be impossible to calculate the stable set
- Non-zero sum games result in some clearly better solutions; these should be studied

Stable Set

• In analytical form: A *stable set* (sometimes called a *von Neumann-Morgenstern solution*) for a game G is a set *I* of imputations such that:

i) I is internally stable: no imputation in I is dominated by any other imputation in I, and

ii) I is *externally stable*: every imputation not in I is dominated by some imputation in I

• **In words:** To be considered in the stable set, we shouldn't be able to either add or remove elements from the set because they are dominated