Introduction

➤ question 1:
Give an example of a equation and and a differential equation.

answer 1:
For instance:

1. An equation: \(x^2 + 3x + 2 = 0\).
2. A differential equation \(y'(x) + y(x) = \sin(x)\)

➤ Question 2:
What is the difference between them?

answer 2:
The main difference is that solutions of equations are numbers and solutions of differential equations are functions. These are maps from sets (parts) of \(\mathbb{R}\) (real numbers) to sets (parts) of \(\mathbb{R}\)
Introduction

For you there are three kinds of differential equations which you can solve by hand (analytically):

- **the separable first order differential equation**,
 example 1: \(y'(x) = y^2(x)x \),

- **the first order linear differential equation**,
 example 2: \(xy'(x) + y(x) = x \) and

- **the second order linear differential equation with constant coefficients**,
 example 3: \(y''(x) + 2y'(x) + y(x) = \sin(x) \)

During the lectures we shall pay attention to them and explain their importance

(you will find theory about it in the book of Stewart chapter 9 and 17).
Are you well suited for modeling?

▶ **Question 1:** Give the derivatives of x^2, $\sin(x)$, $\sin(x^2)$

Answer 1:
$2x$, $\cos(x)$, $\cos(x^2)2x$

▶ **Question 2:** Given the differential equation $xy'(x) + y(x) = 0$ (a first order differential equation). Which of the given functions is a solution: $\sin(x)$, 1, 0, $\frac{1}{x}$?

Answer 2:
Only 0 and $\frac{1}{x}$

▶ **Question 3:** Solve $x^2 + x - 2 = 0$, $xy(x) = x + 1$, $xy'(x) = x + 1$, $y'(x) = y(x)$, $y''(x) = -y(x)$

Answer 3:
x is 1 or -2 (numbers!), $y(x) = \frac{x+1}{x}$ (one function!), $y(x) = x - \frac{1}{x^2} + C$ with C a constant (a lot of functions!), $y(x) = Ke^x$ with K a constant, $y(x) = C_1 \cos(x) + C_2 \sin(x)$ with C_1 and C_2 constants
Modeling with MAPLE, a start:

- Always start a Maple-sheet in **worksheetmode**.
- Further we expect knowledge of the following maple commands: `restart`, `diff`, `solve`, `unapply`, `op`, and `plot`.
- A Maple Demo 1 and comments **Examine!!** the Maple sheet of demo 1 for getting the meaning of the commands.
- Special attention for `unapply`:
The Maple-command "unapply"

The command *unapply* is strongly connected with meaning or definition of a function f

Question: What is the difference between f and $f(x)$?

Answer: Function (Map) f stands for a *action* on elements of a set A to elements of a set (another) B.

To define a function three things are needed:

- two sets A and B,
- and how the action is.
The Maple-command "unapply"

Some examples:

- Function f defined by: $A = \mathbb{R}, B = \mathbb{R}$ (the sets) with $f(x) = x^2$ (defines the action). The action on 2 by f gives 4.

- Function g defined by: $A = \mathbb{R}^2, B = \mathbb{R}$ (the sets) with $g(x, y) = \sqrt{x^2 + y^2}$ (defines the action). The action on $(4, 3)$ by g gives 10.

Remark: In "modeling course" it is common that the sets of the action are not defined. In this case one mostly takes for first set A the "largest" set for which the action is defined, for set B mostly \mathbb{R}. So $f(x) = \sqrt{x}$ means the action between the sets \mathbb{R}_0^+ and \mathbb{R}.
The Maple-command "unapply"

Suppose that in Maple H is declared as the expression $x^2 + \sqrt{x}$.
The Maple action $F := \text{unapply}(H, x)$; means that F is defined as a function (action) between the sets \mathbb{R}^+_0 and \mathbb{R}. The result of action of F on (number) x is the (number) $x^2 + \sqrt{x}$. The latter is noted as $F(x)$.
An application:

Question: Why are differential equations important?

Answer: Because of the second Law of Newton:

\[F^* = -ma \]

and

\[\sum_i F_i = 0 \]

These vector equations result (after defining coordinates) in differential equation(s).
An application:

Question: Describe the motion of a point mass falling down from rest under influence of gravity with air friction.

Answer:

▸ What is the FBD:

◮ Given from the FBD: the vector equation:
 \[F^* + F_w + F_z = 0. \]

◮ We need one axis, we choose the x-axis downwards. What is the corresponding differential equation?
 \[m\ddot{x} + c_w \dot{x} = mg. \] (linear friction)
 if \(v \) is defined as \(\dot{x} \) then we get:
 \[m\dot{v} + c_w v = mg \]
 with initial condition \(v(0) = 0. \)

◮ After the thinking give a Maple solution.