Optimization, a repetition :

The second topic (besides solving DE'-s) of these lectures is to optimize functions of several variables. Question: What do we mean with this?

- Given again the function $f(x, y) = \sqrt{x^2 + y^2}$.
- Suppose we are "sitting" in point P(1, 1) and do several steps with a given size in different directions.
- Because of these steps *f* is changing.
- Question: What is the most optimal step direction?
- ► Answer: If you take the distance interpretation for *f*, the answer is simple: Start at *P* and step in the direction (1,1).
- An analog question for a solution function of a DE x(v, m, c, k, t) is much more complicated!

Tools for Optimization: partial derivative

To answer the general optimization question, the following preliminary tools and answers on questions are needed : Questions:

1. Question1:

Given $f(x, y) = \sin(x^2y^3)$. Find: $\frac{\partial \sin(x^2y^3)}{\partial x}$ Find: $\frac{\partial \sin(x^2y^3)}{\partial y}$

2. Question2:

Given a function g(x, y) and a point $P(p_0, p_1)$. What is the meaning of $\frac{\partial g(P)}{\partial x} > 0$ and $\frac{\partial g(P)}{\partial y} > 0$

2

Differentiation-rules:

The basic rules for differentiation:

- 1. Summation rule: (f + g)' = f' + g'
- 2. Product rule: $(f \cdot g)' = f' \cdot g + f \cdot g'$
- 3. Quotient rule: $\left(\frac{f}{g}\right)' = \frac{f' \cdot g f \cdot g'}{g^2}$
- 4. Chain rule: $(f(g(x)))' = f'(g(x)) \cdot g'(x)$

Some basic examples:

Find in each case the derivative:

- 1. Summation rule:
 - $(x^2 + \sin(x))' = 2x + \cos(x).$
- 2. Product rule: $(x^2 \cdot \sin(x))' = 2x \cdot \sin(x) + x^2 \cdot \cos(x).$
- 3. Quotient rule: $\left(\frac{x^2}{\sin(x)}\right)' = \frac{2x \cdot \sin(x) - x^2 \cdot \cos(x)}{\sin^2(x)}.$
- 4. Chain rule: $(\sin(x^2))' = \cos(x^2) \cdot 2x.$

The meaning of a derivative:

What is meaning of f'(a) > 0?

Some possible answers:

- Function *f* is increasing.
- The slope of the tangent-line is positive

The most exact answer is from the definition is:

 $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h} > 0$

Try to understand this value of this answer, why is it better than former ones?

Lecture 6+7 : optimization May 31, 2013

The meaning of a partial derivative:

Given a function of 2 variables f(x, y) and a point P(a, b)The partial derivative of f(P) w.r.p. to x is:

$$\lim_{h\to 0} \frac{f(a+h,b)-f(a,b)}{h}$$

notation: $\frac{\partial f(P)}{\partial x}$.

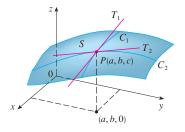
The partial derivative of f(P) w.r.p. to y is:

 $\lim_{h\to 0} \frac{f(a,b+h)-f(a,b)}{h}$

notation:
$$\frac{\partial f(P)}{\partial y}$$
.

Lecture 6+7 : optimization May 31, 2013

The meaning of a partial derivative:



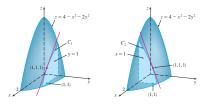
Question: In the picture above; determine the sign of $\frac{\partial f(P)}{\partial x}$. Answer: < 0, and the sign of $\frac{\partial f(P)}{\partial y}$. Answer: > 0 Remark: In this picture you see the two tangents belonging to the partial derivatives. (Both are member of the same tangent plane)

fuDelft

Determining a partial derivative:

From these definitions we can deduce that finding the derivative of a function f(x, y) is nothing more than ordinary differentiation whereby the other variable is taken constant: Example 1: $\frac{\partial}{\partial x}(x^2y^3) = 2xy^3$. Example 2: $\frac{\partial}{\partial y}(x^2y^3) = 3x^2y^2$. Example 3: $\frac{\partial}{\partial x}\left(\frac{\partial}{\partial y}(x^2y^3)\right) = 6xy^2$. A brief notation is $\frac{\partial^2}{\partial x\partial y}(x^2y^3)$, a briefer $(x^2y^3)_{yx}$.

The meaning and calculation of a partial derivative:



Question: In the above

pictures you see the graph of the function $f(x, y) = 4 - x^2 - 2y^2$ and the tangents at (1,1,1) belonging to the two partial derivatives. Find their slopes and are signs of slopes in accordance with the picture?

answer: $f_x(x, y) = -2x$, so $f_x(1, 1) = -2$ so the slope of the first tangent is -2, so the value of *f* at (1,1) is decreasing with increasing *x*!, which is seen in the picture.

 $f_y(x, y) = -4y$, so $f_y(1, 1) = -4$ so the slope of the second tangent is -4, so the value of *f* at (1,1) is decreasing with increasing *y*!, which is also seen in the picture.

tuDelft

Determining partial derivatives of $f(x_1, x_2 \cdots, x_n)$:

Given $f(x_1, x_2, x_3, \cdots, x_n) = x_1^1 x_2^2 x_3^3 \cdots x_n^n$.

- 1. Find $\frac{\partial f}{\partial x_2}$
- 2. Given $P(1, 1, \dots 1)$, We take at *P* a small step in (the positive) " x_2 "-direction and a same small step in (the positive) " x_3 "-direction. In which case is the increase of *f* the most? and if we do at *P* small steps in the opposite directions?

Further reading and exercises see Stewart 14.3

Vectors and Lines in \mathbb{R}^3 , a repetition

Question1:

Given cube *C* with A(0,0,0), B(1,0,0), C(1,1,0), D(0,1,0), E(0,0,1), F(1,0,1), G(1,1,1), H(0,1,1)

1. Find a vector equation for line l_1 through A and C.

Answer: $l_1 = \lambda_1 \langle 1, 1, 0 \rangle$

2. Find a vector equation for line l_2 through *E* and *C*.

Answer: $l_2 = \langle 0, 0, 1 \rangle + \lambda_2 \langle 1, 1, -1 \rangle$

Vectors and Lines in \mathbb{R}^3 , a repetition

Question2:

1. Give the vector equation in \mathbb{R}^2 of the tangent (line) *I* of the graph " $y = x^2$ " at point P(1, 1).

Answer: $I = \langle 1, 1 \rangle + \lambda \langle 1, 2 \rangle$

2. Given the graph of $f(x, y) = x^2 y^3$ and point P(1, 1, 1) on it.

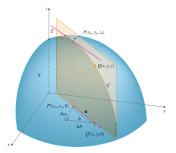
Find the vector equations of tangent lines l_1 and l_2 of the graph at *P* in the plane x = 1 and in the plane y = 1.

Answer: $l_1 = \langle 1, 1, 1 \rangle + \lambda \langle 0, 1, 3 \rangle$ and $l_2 = \langle 1, 1, 1 \rangle + \lambda \langle 1, 0, 2 \rangle$

Directional Derivative

In the last slide we were dealing with tangent lines at a point P in special directions namely in the x and y direction.

View the next picture:



In the picture you see a tangent line *T* in a random direction at $P(x_0, y_0, z_0)$, this direction is determined by a unit vector **u** which lies in *xy*-plane.

Directional Derivative

We want to calculate the slope, which we note as $D_{\mathbf{u}}f(x_0, y_0)$, of the tangent line *T*.

Definition of $D_{u}f(x_0, y_0)$:

$$D_{\mathbf{u}}f(x_0, y_0) = \lim_{h \to 0} \frac{f(x_0 + ah, y_0 + bh) - f(x_0, y_0)}{h}$$

hereby is $\mathbf{u} = \langle a, b \rangle$ with $a^2 + b^2 = 1$, the unit direction.

Question:

Can we calculate $D_{u}f(x_0, y_0)$ without taking the limit?

Directional Derivative

Answer: In 4 steps:

1. Question1:

Give the vector equation of the tangent line *T* Answer: $T = \langle x_0, y_0, f(x_0, y_0) \rangle + \lambda \langle a, b, D_u f(x_0, y_0) \rangle$

2. Question2:

Why lie the three space vectors $\mathbf{v} = \langle a, b, D_{\mathbf{u}}f(x_0, y_0) \rangle$, $\mathbf{v}_1 = \langle 1, 0, f_x(x_0, y_0) \rangle$ and $\mathbf{v}_2 = \langle 0, 1, f_y(x_0, y_0) \rangle$ in one plane? Answer: They are direction vectors of three tangent lines of the graph of *f* at point $P(x_0, y_0, f(x_0, y_0))$. so they lie all in the tangent plane

3. Question3:

Write \mathbf{v} as a (linear) combination of \mathbf{v}_1 and \mathbf{v}_2 .

Answer: $\mathbf{v} = a\mathbf{v}_1 + b\mathbf{v}_2$

4. Question4:

Express $D_{\mathbf{u}}f(x_0, y_0)$ in $f_x(x_0, y_0)$ and $f_y(x_0, y_0)$ Answer: From last answer follows $D_{\mathbf{u}}f(x_0, y_0) = af_x(x_0, y_0) + bf_y(x_0, y_0)$

5. So $D_{\mathbf{u}}f(x_0, y_0) = af_x(x_0, y_0) + bf_y(x_0, y_0)$

Directional Derivative: an exercise

Back to our two dimensional distance function:

- 1. Given $f(x, y) = \sqrt{x^2 + y^2}$ and P(1, 1). Calculate $D_{\mathbf{u}}f(P)$ for the unit-steps $\mathbf{u} = \langle 1, 0 \rangle$, $\mathbf{u} = \langle 0, 1 \rangle$ and $\mathbf{u} = \langle \frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}} \rangle$ Answer: $D_{(1,0)}f(P) = \frac{1}{\sqrt{2}}, D_{(0,1)}f(P) = \frac{1}{\sqrt{2}}, D_{(\frac{1}{\sqrt{2}})}, \frac{1}{\sqrt{2}} \rangle^{f(P)} = 1$
- 2. Calculate $D_{\mathbf{u}}f(P)$ for the general unit step $\mathbf{u} = \langle \cos(\theta), \sin(\theta) \rangle$

Answer: $D_{(\cos \theta, \sin \theta)} f(P) = \frac{1}{\sqrt{2}} (\cos \theta + \sin \theta)$

3. For which θ in the last problem is $D_{\mathbf{u}}f(P)$ a maximum?

For more exercises and theory see Stewart 14.7

Dot product:a Repetition

Given two vectors $\mathbf{a} = \langle a_1, a_2 \rangle$ and $\mathbf{b} = \langle b_1, b_2 \rangle$ Do you remember:

$$\mathbf{a} \cdot \mathbf{b} = a_1 b_1 + a_2 b_2$$

and

$$\mathbf{a} \cdot \mathbf{b} = |\mathbf{a}| |\mathbf{b}| \cos(\theta)$$

whereby θ is the angle between the given vectors. What has this to do with:

$$D_{u}f(x_0, y_0) = af_x(x_0, y_0) + bf_y(x_0, y_0)$$

Lecture 6+7 : optimization May 31, 2013

a convenient formula for $D_{u}f(x_{0}, y_{0})$

 $D_{\mathbf{u}}f(x_0,y_0) = \langle f_x(x_0,y_0), f_y(x_0,y_0) \rangle \cdot \langle a,b \rangle.$

and

$$D_{\mathsf{u}}f(x_0, y_0) = |\langle f_x(x_0, y_0), f_y(x_0, y_0) \rangle || \langle a, b \rangle | \cos(\theta).$$

In the last formula is θ angle between vectors $\mathbf{u} = \langle a, b \rangle$ and $\langle f_x(x_0, y_0), f_y(x_0, y_0) \rangle$ Because $\mathbf{u} = 1$ (unit vector) we get

$$D_{\mathbf{u}}f(x_0, y_0) = |\langle f_x(x_0, y_0), f_y(x_0, y_0) \rangle| \cos(\theta)$$

We note $\langle f_x(x_0, y_0), f_y(x_0, y_0) \rangle$ as $\nabla f(x_0, y_0)$ and is called the gradient of f at point (x_0, y_0) .

An important interpretation of the gradient.

Look at

$$D_{\mathbf{u}}f(\mathbf{x}_0,\mathbf{y}_0) = |\nabla f(\mathbf{x}_0,\mathbf{y}_0)|\cos(\theta)$$

Again the question: In which direction **u** is $D_{\mathbf{u}}f(x_0, y_0)$ a maximum?

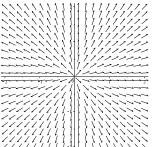
answer: "the gradient direction"

Some questions:

- In what direction do you have to take your (unit) step for minimizing D_uf(x₀, y₀)?
- 2. and in what direction do you have to take your (unit) step(s) such that value $f(x_0, y_0)$ is "unaffected"?
- 3. Make a walk in the *xy*-plane which minimize in every step the value of $\sqrt{x^2 + y^2}!$

A gradient-plot.

In next picture you see a Maple constructed gradient plot for the function $f(x, y) = \sqrt{x^2 + y^2}$:



If you follow the "opposite gradient vectors" starting at a random point you "always" end at (0,0) which belongs to the minimum value of f.

20

Generalizations:

In Rⁿ (*n* the input variables x₁, x₂...x_n are involved) the directional derivative is calculated as:

 $D_{\mathbf{u}}f(\mathbf{p}) = \nabla f(\mathbf{p}) \cdot \mathbf{u}$

- with $\mathbf{u} = \langle u_1, \cdots , u_n \rangle$ a vector in \mathbb{R}^n ,
- with $\mathbf{p} = \langle \mathbf{p}_1, \cdots \mathbf{p}_n \rangle$ a vector in \mathbb{R}^n ,
- with $\nabla f(\mathbf{p}) = \langle f_{x_1}(\mathbf{p}), f_{x_2}(\mathbf{p}), \cdots f_{x_n}(\mathbf{p}) \rangle$,
- with dot product $\mathbf{a} \cdot \mathbf{b}$ defined as $a_1b_1 + a_2b_2 + \cdots + a_nb_n$,
- Interpretation for gradient ∇f(**p**) is:
 If we choose **u** as ^{∇f(**p**)}/_{|∇f(**p**)|} then for given **p** is D_uf(**p**) a maximum
- Remark: The the gradient vector lives in the input space (domain).

An Example.

Question

Given a rectangular box with sizes 8[m] for the length *I*, 4[m] for width *w* and 2[m] for height *h*.

We change *I*, *w* and *h* such that $\triangle I$, $\triangle w$, $\triangle h$ fulfill the condition:

$$\sqrt{(\bigtriangleup l)^2 + (\bigtriangleup w)^2 + (\bigtriangleup h)^2} = 1.$$

Estimate which $\langle \bigtriangleup I, \bigtriangleup w, \bigtriangleup h \rangle$ gives largest volume?

An Example.

Answer:

- We consider the volume V as function: $V(I, w, h) = I \cdot w \cdot h$.
- ▶ We are "sitting" in *P*(8,4,2).
- $\nabla V = \langle wh, lh, lw \rangle$ so in *P* this equals to $\langle 8, 16, 32 \rangle$
- ► So $D_{\mathbf{u}} V(8, 4, 2)$ is a maximal for $\mathbf{u} = \langle \frac{1}{\sqrt{21}}, \frac{2}{\sqrt{21}}, \frac{4}{\sqrt{21}} \rangle$ A good estimate is $\triangle I = \frac{1}{\sqrt{21}}, \triangle w = \frac{2}{\sqrt{21}}, \triangle I = \frac{4}{\sqrt{21}}.$

Approximating extreme values with the gradient

Given some function $f(x_1, \cdots x_n)$.

- 1. Look for a suitable starting point (q_1, q_2, \cdots, q_n) (in the domain)
- 2. Choose a suitable stepsize S (some positive number)
- 3. Define recursion relation (vector form)

$$\mathbf{X}_n = \mathbf{X}_{n-1} \pm \mathbf{S} \nabla f(\mathbf{X}_{n-1})$$

with starting value $\mathbf{X}_0 = \langle q_1, q_2, \cdots q_n \rangle$. Herein we choose + if we are looking for a maximum, we choose - if we are looking for a minimum.

For application see Maple Demo

24