Nonlinear Theory of Elasticity

Dr.-Ing. Martin Ruess

geometry description

Cartesian global coordinate system with base vectors of the Euclidian space

- orthonormal basis
- origin O
- point P
- domain Ω of a deformable body
- closed domain surface $\partial \Omega$

$$
\mathbf{e}_{i}:=\frac{\partial \mathbf{x}}{\partial x_{i}} \in \mathbb{R}^{3}, \quad \mathbf{x}_{i}^{T} \mathbf{x}_{j}=\delta_{i j}
$$

$$
\begin{aligned}
\mathbf{x} & =x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}+x_{3} \mathbf{e}_{3} \\
\mathbf{n} & =n_{1} \mathbf{e}_{1}+n_{2} \mathbf{e}_{2}+n_{3} \mathbf{e}_{3}
\end{aligned}
$$

solid body
rigid body
deformable body

geometry description

neighboring points remain neighboring points independent of time
distant between points remains constant during displacement
distance between neighboring points may change with time

reference configuration Ω

- often: state at time $t=0$
- material points $P(\mathbf{x}, t)$
instant configuration $\hat{\Omega}$
- often: state at time $\hat{t} \neq t$
- material points $P(\hat{\mathbf{x}}, t)$

$$
\begin{aligned}
\mathbf{u} & :=\hat{\mathbf{x}}-\mathbf{x}
\end{aligned} \quad \mathbf{x}=x_{1} \mathbf{e}_{1}+x_{2} \mathbf{e}_{2}+x_{3} \mathbf{e}_{3}, ~\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right] \quad=\left[\begin{array}{l}
\hat{x}_{1} \\
\hat{x}_{2} \\
\hat{x}_{3}
\end{array}\right]-\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3}
\end{array}\right] \quad \hat{\mathbf{x}}=\hat{x}_{1} \mathbf{e}_{1}+\hat{x}_{2} \mathbf{e}_{2}+\hat{x}_{3} \mathbf{e}_{3} .
$$

displacement \mathbf{u} is a combination of

- rigid body movement/rotation ($A B=$ const for any two points)
- deformation ($\mathrm{AB} \neq$ const)

A, B neighboring points of the deformable body

kinematics - deformation state

- infinitesimal volume considered
- base vectors of reference and instant configuration
$d x_{i}$: infinitesimal edge length

$$
\begin{aligned}
d \mathbf{x} & =\mathbf{e}_{1} d x_{1}+\mathbf{e}_{2} d x_{2}+\mathbf{e}_{3} d x_{3} \\
d \hat{\mathbf{x}} & =\mathbf{b}_{1} d x_{1}+\mathbf{b}_{2} d x_{2}+\mathbf{b}_{3} d x_{3}
\end{aligned}
$$

$\mathbf{e}_{i} \quad:=\frac{\partial \mathbf{x}}{\partial x_{i}} \quad i \in\{1,2,3\}$

$$
\mathbf{b}_{i}:=\frac{\partial \hat{\mathbf{x}}}{\partial x_{i}}=\frac{\partial(\mathbf{x}+\mathbf{u})}{\partial x_{i}}=\mathbf{e}_{i}+\frac{\partial \mathbf{u}}{\partial x_{i}}
$$

kinematics - deformation state

method of Lagrange

- material particle identification in the reference configuration Ω
- particle location \mathbf{x} at time \hat{t} is a function of (\mathbf{x}, t) and \hat{t}
- analog for state variables

kinematics - deformation state

method of Euler

- material particle identification in the instant configuration $\hat{\Omega}$
- particle location \mathbf{x} at time \hat{t} is a function of $(\hat{\mathbf{x}}, t)$ and \hat{t}
- analog for state variables

kinematics - deformation gradient \mathbf{F}

- material deformation gradient \mathbf{F}
- representation of diagonal $d \hat{\mathbf{x}}$ as function of diagonal $d \mathbf{x}$
- columns of \mathbf{F} are the instant base vectors $\mathbf{b}_{\mathrm{k}}(\mathrm{k}=1,2,3)$

$$
\begin{aligned}
d \hat{\mathbf{x}} & =\mathbf{F} d \mathbf{x} \\
{\left[\begin{array}{l}
d \hat{x}_{1} \\
d \hat{x}_{2} \\
d \hat{x}_{3}
\end{array}\right] } & =\left[\begin{array}{lll}
\frac{\partial \hat{x}_{1}}{\partial x_{1}} & \frac{\partial \hat{x}_{1}}{\partial x_{2}} & \frac{\partial \hat{x}_{1}}{\partial x_{3}} \\
\frac{\hat{x}_{2}}{\partial x_{1}} & \frac{\partial \hat{x}_{2}}{\partial x_{2}} & \frac{\partial \hat{x}_{2}}{\partial x_{3}} \\
\frac{\partial \hat{x}_{3}}{\partial x_{1}} & \frac{\partial \hat{x}_{3}}{\partial x_{2}} & \frac{\partial \hat{x}_{3}}{\partial x_{3}}
\end{array}\right]\left[\begin{array}{l}
d x_{1} \\
d x_{2} \\
d x_{3}
\end{array}\right] \\
& =\left[\begin{array}{lll}
\mathbf{b}_{1} & \mathbf{b}_{2} & \mathbf{b}_{3}
\end{array}\right]\left[\begin{array}{l}
d x_{1} \\
d x_{2} \\
d x_{3}
\end{array}\right]
\end{aligned}
$$

kinematics - deformation gradient \mathbf{F}

- use the deformation gradient \mathbf{F} to show the change in volume for the infinitesimal volume in instant and reference configuration

kinematics - displacement gradient H

- split of the deformation gradient \mathbf{F} into a unit matrix I and a matrix \mathbf{H}
- H contains the partial derivatives of u w.r.t. coordinates of ref. config.

$$
\begin{aligned}
& d \hat{\mathbf{x}}=(\mathbf{I}+\mathbf{H}) d \mathbf{x} \\
& {\left[\begin{array}{l}
d \hat{x}_{1} \\
d \hat{x}_{2} \\
d \hat{x}_{3}
\end{array}\right] }=\left[\begin{array}{ccc}
1+\frac{\partial u_{1}}{\partial x_{1}} & \frac{\partial u_{1}}{\partial x_{2}} & \frac{\partial u_{1}}{\partial x_{3}} \\
\frac{\partial u_{2}}{\partial x_{1}} & 1+\frac{\partial u_{2}}{\partial x_{2}} & \frac{\partial u_{2}}{\partial x_{3}} \\
\frac{\partial u_{3}}{\partial x_{1}} & \frac{\partial u_{3}}{\partial x_{2}} & 1+\frac{\partial u_{3}}{\partial x_{3}}
\end{array}\right]\left[\begin{array}{l}
d x_{1} \\
d x_{2} \\
d x_{3}
\end{array}\right] \\
& \text { with } \quad \mathbf{H}=\left[\begin{array}{lll}
\frac{\partial u_{1}}{\partial x_{1}} & \frac{\partial u_{1}}{\partial x_{2}} & \frac{\partial u_{1}}{\partial x_{3}} \\
\frac{\partial u_{2}}{\partial x_{1}} & \frac{\partial u_{2}}{\partial x_{2}} & \frac{\partial u_{2}}{\partial x_{3}} \\
\frac{\partial u_{3}}{\partial x_{1}} & \frac{\partial u_{3}}{\partial x_{2}} & \frac{\partial u_{3}}{\partial x_{3}}
\end{array}\right]
\end{aligned}
$$

kinematics - state of strain

- consider the change the length of $d \mathbf{x}$
- deformation measure referred to the reference configuration
- results in the strain tensor of Green

$$
\begin{aligned}
d \hat{\mathbf{x}}^{T} d \hat{\mathbf{x}}-d \mathbf{x}^{T} d \mathbf{x} & =d \mathbf{x}^{T}(\mathbf{I}+\mathbf{H})^{T}(\mathbf{I}+\mathbf{H}) d \mathbf{x}-d \mathbf{x}^{T} d \mathbf{x} \\
& =d \mathbf{x}^{T}\left(\mathbf{H}+\mathbf{H}^{T}+\mathbf{H}^{T} \mathbf{H}\right) d \mathbf{x} \\
(\mathbf{H} & \left.+\mathbf{H}^{T}+\mathbf{H}^{T} \mathbf{H}\right):=2 \mathbf{E}
\end{aligned}
$$

$$
\begin{aligned}
\text { strain tensor of } \hat{\Omega}: \mathbf{E}= & \frac{1}{2}\left(\mathbf{H}+\mathbf{H}^{T}+\mathbf{H}^{T} \mathbf{H}\right) \\
\text { tensor coordinates: } e_{i m}= & \frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{m}}+\frac{\partial u_{m}}{\partial x_{i}}+\sum_{k} \frac{\partial u_{k}}{\partial x_{i}} \frac{\partial u_{k}}{\partial x_{m}}\right) \\
& \quad i, m, k \in\{1,2,3\}
\end{aligned}
$$

kinematics - state of strain

- consider the change the length of $d \mathbf{x}$
- deformation measure referred to the reference configuration
- results in the strain tensor of Green-Lagrange

$$
\begin{aligned}
d \hat{\mathbf{x}}^{T} d \hat{\mathbf{x}}-d \mathbf{x}^{T} d \mathbf{x} & =d \mathbf{x}^{T}(\mathbf{I}+\mathbf{H})^{T}(\mathbf{I}+\mathbf{H}) d \mathbf{x}-d \mathbf{x}^{T} d \mathbf{x} \\
& =d \mathbf{x}^{T}\left(\mathbf{H}+\mathbf{H}^{T}+\mathbf{H}^{T} \mathbf{H}\right) d \mathbf{x} \\
(\mathbf{H} & \left.+\mathbf{H}^{T}+\mathbf{H}^{T} \mathbf{H}\right):=2 \mathbf{E}
\end{aligned}
$$

$$
\text { strain tensor of } \hat{\Omega}: \mathbf{E}=\frac{1}{2}\left(\mathbf{H}+\mathbf{H}^{T}+\mathbf{H}^{T} \mathbf{H}\right)
$$

$$
\begin{gathered}
\text { tensor coordinates: } e_{i m}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{m}}+\frac{\partial u_{m}}{\partial x_{i}}+\sum_{k} \frac{\partial u_{k}}{\partial x_{i}} \frac{\partial u_{k}}{\partial x_{m}}\right) \\
\text { LINEAR THEORY } \\
i, m, k \in\{1,2,3\}
\end{gathered}
$$

kinematics - Green strain tensor

strain tensor of $\hat{\Omega}: \mathbf{E}=\frac{1}{2}\left(\mathbf{H}+\mathbf{H}^{T}+\mathbf{H}^{T} \mathbf{H}\right)$
tensor coordinates: $e_{i m}=\frac{1}{2}\left(\frac{\partial u_{i}}{\partial x_{m}}+\frac{\partial u_{m}}{\partial x_{i}}+\sum_{k} \frac{\partial u_{k}}{\partial x_{i}} \frac{\partial u_{k}}{\partial x_{m}}\right)$ $i, m, k \in\{1,2,3\}$

$$
\mathbf{E}=\left[\begin{array}{lll}
e_{11} & e_{12} & e_{13} \\
e_{21} & e_{22} & e_{23} \\
e_{31} & e_{32} & e_{33}
\end{array}\right]
$$

- diagonal coefficients $e_{i i}$
- off-diagonal coefficients $e_{i m}$
stretch: measure of fibre elongation shear: measure of the angle between fibre angles

kinematics - strain-displacement relation

... applying Voigt notation

$$
\begin{aligned}
\boldsymbol{\epsilon} & =\mathbf{D} \mathbf{u} \\
{\left[\begin{array}{l}
\epsilon_{11} \\
\epsilon_{22} \\
\epsilon_{33} \\
\epsilon_{23} \\
\epsilon_{31} \\
\epsilon_{12}
\end{array}\right] } & =\left[\begin{array}{ccc}
\frac{\partial}{\partial x_{1}} & 0 & 0 \\
0 & \frac{\partial}{\partial x_{2}} & 0 \\
0 & 0 & \frac{\partial}{\partial x_{3}} \\
0 & \frac{\partial}{\partial x_{3}} & \frac{\partial}{\partial x_{2}} \\
\frac{\partial}{\partial x_{3}} & 0 & \frac{\partial}{\partial x_{1}} \\
\frac{\partial}{\partial x_{2}} & \frac{\partial}{\partial x_{1}} & 0
\end{array}\right]\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3}
\end{array}\right] \\
\epsilon_{i i}=e_{i i} & =\left(\frac{\partial u_{i}}{\partial x_{i}}+\frac{1}{2} \sum_{k} \frac{\partial u_{k}}{\partial u_{i}} \frac{\partial u_{k}}{\partial u_{i}}\right) \\
\epsilon_{i j}=2 e_{i j} & =\left(\frac{\partial u_{i}}{\partial x_{j}}+\frac{\partial u_{j}}{\partial x_{i}}+\sum_{k} \frac{\partial u_{k}}{\partial u_{i}} \frac{\partial u_{k}}{\partial u_{j}}\right)
\end{aligned}
$$

stress vector - stress tensor

- stress vector in direction of the surface normal \mathbf{n}
- action of subfield C_{1} on C_{2} is replaced by a fictitious force $d p$

$$
\begin{aligned}
\hat{\mathbf{t}} & =\lim _{d a \rightarrow 0} \frac{d \mathbf{p}}{d a} \\
{\left[\begin{array}{c}
\hat{t}_{1} \\
\hat{t}_{2} \\
\hat{t}_{3}
\end{array}\right] } & =\hat{t}_{1} \mathbf{e}_{1}+\hat{t}_{2} \mathbf{e}_{2}+\hat{t}_{3} \mathbf{e}_{3}
\end{aligned}
$$

$$
\text { stress vector at point } \hat{P}
$$

statics - stress tensor of Cauchy

- stress tensor of the deformed configuration
- columns of the Cauchy stress tensor are the stress vectors on the positive faces of the element

forces in $x_{2^{-}}$and x_{3}-direction analogous load acting on the unit volume $\rightarrow \hat{\rho} \mathbf{p}$

$$
\sum F=\mathbf{0}=-\hat{\mathbf{s}}_{1} d \hat{x}_{2} d \hat{x}_{3}+\left(\hat{\mathbf{s}}_{1}+\frac{\partial \hat{\mathbf{s}}_{1}}{\partial \hat{x}_{1}} d \hat{x}_{1}\right) d \hat{x}_{2} d \hat{x}_{3}+\hat{\rho} \mathbf{p} d \hat{x}_{1} d \hat{x}_{2} d \hat{x}_{3}
$$

statics - equilibrium

sum of the moments acting on the element is null in the state of equilibrium
\rightarrow from this follows the symmetry of the Cauchy stress tensor

$$
\hat{s}_{i k}=\hat{s}_{k i}
$$

statics - 1st Piola-Kirchhoff stress tensor

- consider a surface element of the reference configuration Ω which is replaced to the instant configuration $\hat{\Omega}$

$$
d \mathbf{a}(=\mathbf{n} d a) \quad \rightarrow \quad d \hat{\mathbf{a}}(=\mathbf{n} d \hat{a})
$$

- $1^{\text {st }}$ Piola-Kirchhoff tensor causes the same force $d \mathbf{f}$ (definition!)

$$
\text { on } d \mathbf{a}(=\mathbf{n} d a) \& d \hat{\mathbf{a}}(=\mathbf{n} d \hat{a})
$$

$$
d \mathbf{f}=\quad \mathbf{P} d \mathbf{a}=\hat{\mathbf{S}} d \hat{\mathbf{a}}=(\operatorname{det} \mathbf{F}) \hat{\mathbf{S}} \hat{\mathbf{F}}^{T} d \mathbf{a}
$$

$$
\mathbf{P}=(\operatorname{det} \mathbf{F}) \hat{\mathbf{S}} \hat{\mathbf{F}}^{T}
$$

$1^{\text {st }}$ Piola Kirchhoff tensor

- stress coordinates are referred to the global base vectors
- $1^{\text {st }}$ PK stress tensor is unsymmetric, in general, not in use!

statics - 2nd Piola-Kirchhoff stress tensor

- PK1 force vector referred to the basis of the instant configuration $\hat{\Omega}$

$$
\begin{aligned}
\mathbf{p}_{k} & =p_{1 k} \mathbf{e}_{1}+p_{2 k} \mathbf{e}_{2}+p_{3 k} \mathbf{e}_{3} \\
\mathbf{p}_{k} & =s_{1 k} \mathbf{b}_{1}+s_{2 k} \mathbf{b}_{2}+s_{3 k} \mathbf{b}_{3}
\end{aligned}
$$

- bases vectors in $\hat{\Omega}$ are the columns of the deformation gradient

$$
\mathbf{P}=\mathbf{F S}
$$

- relation between Cauchy stress tensor and $2^{\text {nd }} \mathrm{PK}$ tensor

$$
\begin{aligned}
\mathbf{S} & =(\operatorname{det} \mathbf{F}) \hat{\mathbf{F}} \hat{\mathbf{S}} \hat{\mathbf{F}}^{t} \\
\hat{\mathbf{S}} & =(\operatorname{det} \hat{\mathbf{F}}) \mathbf{F} \mathbf{S} \mathbf{F}^{t}
\end{aligned}
$$

$2^{\text {nd }}$ Piola Kirchhoff tensor is symmetric! energetically conjugate stress tensor to the Green strain tensor
statics - stress-strain relation
... linear elasticity - Hooke's law

$$
\begin{aligned}
& \boldsymbol{\sigma}=\mathrm{C} \boldsymbol{\epsilon} \\
& {\left[\begin{array}{l}
\sigma_{11} \\
\sigma_{22} \\
\sigma_{33} \\
\sigma_{23} \\
\sigma_{31} \\
\sigma_{12}
\end{array}\right]=\left[\begin{array}{llllll}
a & b & b & 0 & 0 & 0 \\
b & a & b & 0 & 0 & 0 \\
b & b & a & 0 & 0 & 0 \\
0 & 0 & 0 & c & 0 & 0 \\
0 & 0 & 0 & 0 & c & 0 \\
0 & 0 & 0 & 0 & 0 & c
\end{array}\right]\left[\begin{array}{l}
\epsilon_{11} \\
\epsilon_{22} \\
\epsilon_{33} \\
\epsilon_{23} \\
\epsilon_{31} \\
\epsilon_{12}
\end{array}\right]} \\
& a=\frac{E(1-\nu)}{(1+\nu)(1-2 \nu)} \\
& b=a \frac{\nu}{(1-\nu)} \quad c=a \frac{(1-2 \nu)}{2(1-\nu)}
\end{aligned}
$$

partial differential equation

governing equations

$$
\begin{array}{lll}
\text { strain }-\operatorname{displm} . & e_{i m}=\frac{1}{2}\left(u_{i, m}+u_{m, i}+\sum_{k} u_{k, m} u_{k, i}\right) & \hat{\mathbf{x}} \in \hat{\Omega} \\
\text { stress }- \text { strain } & \hat{s}_{i m}=C_{i m k l} e_{k l} & \hat{\mathbf{x}} \in \hat{\Omega} \\
\text { equilibrium } & 0 & =\hat{s}_{i 1,1}+\hat{s}_{i 2,2}+\hat{s}_{i 3,3}+\hat{\rho} q_{i} \\
\text { stress vector } & \hat{t}_{i}=\hat{\mathbf{s}}_{i}^{T} \mathbf{n} & \hat{\mathbf{x}} \in \hat{\Omega} \\
\text { n } & \hat{\mathbf{x}} \in \partial \hat{\Omega}
\end{array}
$$

$e_{i m} / \hat{s}_{i m} \quad$ Green-Lagrange/Cauchy strain/stress tensor coordinates

Dirichlet (prescribed displacements)

$$
\mathbf{x} \in \partial \hat{\Omega} \wedge \mathbf{u} \in \hat{\Gamma}_{u}: u_{i}=u_{i 0}
$$

Neumann (prescribed stresses)

$$
\mathbf{x} \in \partial \hat{\Omega} \wedge \mathbf{t} \in \hat{\Gamma}_{t}: t_{i}=t_{i 0}
$$

$\hat{\Gamma}_{u}$: boundary of prescribed displacements components
$\hat{\Gamma}_{t}$: boundary of prescribed stress vector components

solution approach - FEM

weighted residual approach, cf linear theory of elasticity

- choice of a suited approximation rule for the displacement state
- definition of residuals which are not a priori satisfied
- choose of admissible/suited weight functions
- here: Bubnov-Galerkin approach: variation of displacements
- multiply residuals with weight functions
- integration over volume of the instant configuration

$$
\int_{\hat{\Omega}} g(\hat{\mathbf{x}}) r(\hat{\mathbf{x}}) d \hat{\mathbf{x}}=0
$$

spatial integral form

$1^{\text {st }}$ integral form

$$
\begin{aligned}
& \int_{\hat{\Omega}} \sum_{i} \sum_{m}\left(\delta u_{i} \frac{\partial \hat{s}_{i m}}{\partial \hat{x}_{m}}\right) d \hat{v}+\int_{\hat{\Omega}} \sum_{i} \delta u_{i} \hat{\rho} q_{i} d \hat{v}+ \\
& \int_{\delta \hat{\Omega}} \sum_{i} \delta u_{i}\left(\hat{t}_{i}-\sum_{m} \hat{s}_{i m} n_{m}\right) d \hat{a}+ \\
& \quad \int_{\hat{\Gamma}_{t}} \sum_{i} \delta u_{i}\left(\hat{t}_{i}-\hat{t}_{i_{0}}\right) d \hat{a}+\int_{\hat{\Gamma}_{u}} \sum_{i} \delta \hat{t}_{i}\left(\hat{u}_{i}-\hat{u}_{i_{0}}\right) d \hat{a}=0
\end{aligned}
$$

$2^{\text {nd }}$ integral form (Principle of virtual work)

$$
\begin{gathered}
\int_{\hat{\Omega}} \sum_{i} \sum_{m} \hat{s}_{i m} \delta\left(\frac{\partial u_{i}}{\partial \hat{x}_{m}}\right) d \hat{v}=\int_{\hat{\Omega}} \sum_{i} \delta u_{i} \hat{\rho} q_{i} d \hat{v}+\int_{\hat{\Gamma}_{t}} \sum_{i} \delta u_{i} \hat{t}_{i_{0}} d \hat{a} \\
u_{i}=u_{i_{0}} \quad \hat{x}_{i} \in \hat{\Gamma}_{u}
\end{gathered}
$$

- spatial integral form derived for volume elements of the instant config.
- volume of the body in $\hat{\Omega}$ is unknown!

material integral form

integral equation is referred to the known reference configuration
replace ...

- unknow volume $d \hat{v} \quad$ with known volume $d v$
- Cauchy coordinates $\hat{s}_{i m}$ with $2^{\text {nd }}$ Piola-Kirchhoff coordinates $s_{i m}$
- instant coordinate \hat{x}_{i} with $x_{i}+u_{i}$
on the left hand follows

$$
\sum_{i} \sum_{m} \hat{s}_{i m} \delta\left(\frac{\partial u_{i}}{\partial \hat{x}_{m}}\right) d \hat{v}=\sum_{i} \sum_{m} \delta e_{i m} s_{i m} d v
$$

on the right hand follows in analogy

$$
\sum_{i} \delta u_{i} \hat{t}_{i} d \hat{a}=\sum_{i} \delta u_{i} p_{i} d a
$$

material integral form

Principle of virtual work

$$
\begin{gathered}
\int_{\Omega} \sum_{i} \sum_{m} \delta e_{i m} s_{i m} d v=\int_{\Omega} \sum_{i} \delta u_{i} q_{i} d v+ \\
\int_{\Gamma_{t}} \sum_{i} \delta u_{i} p_{i 0} d a \\
\wedge u_{i}=u_{i 0} \quad \mathbf{x} \in \Gamma_{u}
\end{gathered}
$$

- strains are nonlinear functions of the derivatives (Green-Lagrange)
- stresses ($2^{\text {nd }} \mathrm{PK}$) are referred to base vectors of reference $\&$ instant config.
- conservative loads are assumed \rightarrow independent of the displacements

- stepwise solution for the nonlinear equations $0, \Delta t, 2 \Delta t, \ldots, t$
- initial configuration is assumed to be known
- solution at the end of each step
- governing equations are incremental equations
- consistent linearization leads to incremental equations

incremental equations
$\Omega \quad$ reference configuration
$\hat{\Omega} \quad$ instant configuration I, known from previous step
$\bar{\Omega} \quad$ instant configuration II, unknown
$\overline{\mathbf{u}}$ unknown displacement state at the end of step i
u known displacement state at beginning of step i
$\Delta \mathbf{u} \quad$ displacement increment from $\hat{\Omega}$ to $\bar{\Omega}$

Total Lagrangian (TL) formulation
\rightarrow referred to Ω
Updated Lagrangian (UL) formulation
\rightarrow referred to $\hat{\Omega}$

incremental equations

state variables

$$
\begin{aligned}
\bar{u}_{i} & =u_{i}+\Delta u_{i} \\
\bar{q}_{i 0} & =q_{i 0}+\Delta q_{i 0} \\
\bar{e}_{i j} & =e_{i j}+\Delta e_{i j} \\
\bar{s}_{i j} & =s_{i j}+\Delta s_{i j}
\end{aligned}
$$

Incremental strain-displacement relationship

$$
\begin{aligned}
& \bar{e}_{i j}= \frac{1}{2}\left(\bar{u}_{i, j}+\bar{u}_{j, i}+\sum_{k=1}^{3} \bar{u}_{k, i} \bar{u}_{k, j}\right) \\
&= \frac{1}{2}\left(u_{i, j}+\Delta u_{i, j}+u_{j, i}+\Delta u_{j, i}+\sum_{k=1}^{3}\left(u_{k, i}+\Delta u_{k, i}\right)\left(u_{k, j}+\Delta u_{k, j}\right)\right) \\
&= \frac{1}{2}\left(u_{i, j}+u_{j, i}+\Delta u_{i, j}+\Delta u_{j, i}+\right. \\
&\left.\quad \sum_{k=1}^{3} u_{k, i} u_{k, j}+u_{k, i} \Delta u_{k, j}+u_{k, j} \Delta u_{k, i}+\Delta u_{k, i} \Delta u_{k, j}\right)
\end{aligned}
$$

incremental equations

state variables

$$
\begin{aligned}
\bar{u}_{i} & =u_{i}+\Delta u_{i} \\
\bar{q}_{i 0} & =q_{i 0}+\Delta q_{i 0} \\
\bar{e}_{i j} & =e_{i j}+\Delta e_{i j} \\
\bar{s}_{i j} & =s_{i j}+\Delta s_{i j}
\end{aligned}
$$

Incremental strain-displacement relationship

$$
\begin{aligned}
\bar{e}_{i j} & =e_{i j}+\Delta e_{i j}^{L}+\Delta e_{i j}^{N} \\
e_{i j} & =\frac{1}{2}\left(u_{i, j}+u_{j, i}+\sum_{k=1}^{3} u_{k, i} u_{k, j}\right) \\
\Delta e_{i j}^{L} & =\frac{1}{2}\left(\Delta u_{i, j}+\Delta u_{j, i}+\sum_{k=1}^{3}\left(u_{k, i} \Delta u_{k, j}+u_{k, j} \Delta u_{k, i}\right)\right) \\
\Delta e_{i j}^{N} & =\frac{1}{2} \sum_{k=1}^{3}\left(\Delta u_{k, i} \Delta u_{k, j}\right)
\end{aligned}
$$

incremental equations

state variables

$$
\begin{aligned}
\bar{u}_{i} & =u_{i}+\Delta u_{i} \\
\bar{q}_{i 0} & =q_{i 0}+\Delta q_{i 0} \\
\bar{e}_{i j} & =e_{i j}+\Delta e_{i j} \\
\bar{s}_{i j} & =s_{i j}+\Delta s_{i j}
\end{aligned}
$$

Variation of the state of displacements

$$
\begin{aligned}
\delta \overline{\mathbf{u}} & =\delta(\mathbf{u}+\Delta \mathbf{u}) \\
& =\delta \mathbf{u}+\delta(\Delta \mathbf{u}) \\
& =\delta(\Delta \mathbf{u})
\end{aligned}
$$

Variation of the state of strain

$$
\begin{aligned}
\delta \bar{e}_{i j} & =\delta\left(\Delta e_{i j}\right) \\
& =\delta\left(\Delta e_{i j}^{L}\right)+\delta\left(\Delta e_{i j}^{N}\right) \\
\delta\left(\Delta e_{i j}^{N}\right) & =\frac{1}{2} \sum_{k=1}^{3}\left(\Delta u_{k, i} \delta\left(\Delta u_{k, j}\right)+\Delta u_{k, j} \delta\left(\Delta u_{k, i}\right)\right)
\end{aligned}
$$

incremental equations

Governing equations in vector notation

$$
\begin{aligned}
& \int_{\Omega} \sum_{i} \sum_{j} \delta\left(\Delta e_{i j}^{L}\right) \Delta s_{i j} d v+\int_{\Omega} \sum_{i} \sum_{j} \delta\left(\Delta e_{i j}^{N}\right) s_{i j} d v= \\
& \Delta r+\int_{\Omega} \sum_{i} \delta\left(\Delta u_{i}\right) \Delta p_{i} \rho d v+\int_{\Gamma_{t}} \sum_{i} \delta\left(\Delta u_{i}\right) \Delta t_{i 0} d a
\end{aligned}
$$

with

$$
\begin{aligned}
\Delta r= & \int_{\Omega} \sum_{i} \delta\left(\Delta u_{i}\right) p_{i} \rho d v+\int_{\Gamma_{t}} \sum_{i} \delta\left(\Delta u_{i}\right) t_{i 0} d a \\
& -\int_{\Omega} \sum_{i} \sum_{j} \delta\left(\Delta e_{i j}^{L}\right) s_{i j} d v
\end{aligned}
$$

incremental equations

Governing equations in vector notation

$$
\begin{gathered}
\int_{\Omega} \delta\left(\Delta \boldsymbol{\epsilon}_{C}\right)^{T} \mathbf{C}\left(\Delta \boldsymbol{\epsilon}_{C}\right) d v+\int_{\Omega} \delta\left(\Delta \boldsymbol{\epsilon}_{L}\right)^{T} \mathbf{C}\left(\Delta \boldsymbol{\epsilon}_{L}\right) d v+\int_{\Omega} \sum_{k} \delta\left(\Delta \mathbf{g}_{k}\right)^{T} \mathbf{S} \Delta \mathbf{g}_{k} d v \\
=\Delta r+\int_{\Omega} \delta(\Delta \mathbf{u})^{T} \Delta \mathbf{p} \rho d v+\int_{\Gamma_{t}} \delta(\Delta \mathbf{u})^{T} \Delta \mathbf{t}_{0} d a
\end{gathered}
$$

with

$$
\Delta r=\int_{\Omega} \delta(\Delta \mathbf{u})^{T} \mathbf{p} \rho d v+\int_{\Gamma_{t}} \delta(\Delta \mathbf{u})^{T} \mathbf{t}_{0} d a-\int_{\Omega} \delta\left(\Delta \boldsymbol{\epsilon}_{C}+\Delta \boldsymbol{\epsilon}_{L}\right)^{T} \boldsymbol{\sigma} d v
$$

Governing equations in vector notation

$$
\begin{aligned}
& \Delta \boldsymbol{\epsilon}_{C}=\left[\begin{array}{l}
\Delta e_{11_{C}} \\
\Delta e_{22_{C}} \\
\Delta e_{33_{C}} \\
\Delta e_{12_{C}} \\
\Delta e_{23_{C}} \\
\Delta e_{31_{C}}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}
2 \Delta u_{1,1} \\
2 \Delta u_{2,2} \\
2 \Delta u_{3,3} \\
\left(\Delta u_{1,2}+\Delta u_{2,1}\right) \\
\left(\Delta u_{2,3}+\Delta u_{3,2}\right) \\
\left(\Delta u_{3,1}+\Delta u_{1,3}\right)
\end{array}\right] \\
& \Delta \boldsymbol{\epsilon}_{L}=\left[\begin{array}{l}
\Delta \mathbf{g}_{k}=\left[\begin{array}{l}
\Delta u_{k, 1} \\
\Delta u_{k, 2} \\
\Delta u_{k, 3}
\end{array}\right] \\
\Delta e_{11_{L}} \\
\Delta e_{22_{L}} \\
\Delta e_{33_{L}} \\
\Delta e_{12_{L}} \\
\Delta e_{23_{L}} \\
\Delta e_{31_{L}}
\end{array}\right]=\frac{1}{2}\left[\begin{array}{c}
\sum_{k=1}^{3} 2\left(u_{k, 1} \Delta u_{k, 1}\right) \\
\sum_{k=1}^{3} 2\left(u_{k, 2} \Delta u_{k, 2}\right) \\
\sum_{k=1}^{3} 2\left(u_{k, 3} \Delta u_{k, 3}\right) \\
\sum_{k=1}^{3}\left(u_{k, 1} \Delta u_{k, 2}+u_{k, 2} \Delta u_{k, 1}\right) \\
\sum_{k=1}^{3}\left(u_{k, 2} \Delta u_{k, 3}+u_{k, 3} \Delta u_{k, 2}\right) \\
\sum_{k=1}^{3}\left(u_{k, 3} \Delta u_{k, 1}+u_{k, 1} \Delta u_{k, 3}\right)
\end{array}\right]
\end{aligned}
$$

