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geometry description

Cartesian global coordinate system with base vectors of the Euclidian space

n = orthonormal basis
P +—> = origin O
e X = point P
: o0 = domain {2 of a deformable body
O L2 ) = closed domain surface Of)
€2
€1
L1
0x
e, ‘= c R? xIx;, = ¢
' (%Z 7 v g
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geometry description

$3A
n
e; X X = $161+$2€2—|—£E363
29 n = nie; +nyge€r+ n3ges
, L2
O €9
€1
L1
solid body neighboring points remain neighboring points
independent of time
rigid body distant between points remains constant during

displacement

deformable body distance between neighboring points may change
with time
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configurations

——->
reference configuration () instant configuration ()
= often: state attime ¢t =0 = often: state at time { # ¢
= material points P(x,t) = material points P(X,t)
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kinematics - state of displacements

CB3A
———
€3
0,
u = X—X X = I1€e]+ T9€e9 + T3€3
_Ul CIA31 1
U9 = ZIATQ — | X9 X = 52’161 + 52'262 + Si'geg
U3 | T3] |73
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kinematics - state of displacements

.T3A

displacement u is a combination of

= rigid body movement/rotation (AB = const for any two points)

= deformation (AB # const)

A, B neighboring points of the deformable body
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kinematics - deformation state

€3 d.flf3A

= infinitesimal volume considered

= base vectors of reference and instant configuration

dx = ej;dxr; +esdry + eszdrs

dxX = b1 da:l —+ bQ dil?g + b3 dl’g
dx; : infinitesimal edge length
ox 0x J(x + u) du

€; = 33;@ 26{1,2,3} bz = 8332 = 8—1‘1 = e@‘l_axz
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kinematics - deformation state

€3 dl’3‘&

method of Lagrange
= material particle identification in the reference configuration )

= particle location X at time ¥ is a function of (X, t) and T

= analog for state variables
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kinematics - deformation state

€3 dl’3‘&

method of Euler
= material particle identification in the instant configuration ()

= particle location X at time T is a function of ()A(, t) and ©

= analog for state variables
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kinematics - deformation gradient F

= material deformation gradient F
= representation of diagonal X as function of diagonal dx
= columns of F are the instant base vectors b, (k=1,2,3)

dX = Fdx
o E N
dzx 1 dry Ozz Oxs dx 1
- _ 0Ta 02 0o
dﬂj? o 8561 8:(:2 8.933 dxz
dxs Ois O3 Ois | |dzs
B B _8581 81’2 (9373 _ B B
_dxl_
= [bl bQ b 3] dx )
_dCIZ 3]
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kinematics - deformation gradient F

= use the deformation gradient F to show the change in volume for the
infinitesimal volume in instant and reference configuration

€3 dl’3‘&
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kinematics - displacement gradient H

= split of the deformation gradient F into a unit matrix I and a matrix H

= H contains the partial derivatives of u w.r.t. coordinates of ref. config.
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kinematics - state of strain

= consider the change the length of dx

= deformation measure referred to the reference configuration

= results in the strain tensor of Green
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dx'd% — dx'dx = dx'(I+H)" (I+H)dx — dx'dx
= dx'(H+H! + H' H)dx

H+H" + H'H) = 2E

A 1
strain tensor of Q: E = §(H + H + HTH)
1 a 1 8 m a 6
tensor coordinates: e;,, = 5 (asm T 8?;7; 4+ Ek 61? a;:i )

i,m,k € {1,2,3}



kinematics - state of strain

= consider the change the length of dx
= deformation measure referred to the reference configuration

= results in the strain tensor of Green-Lagrange

dx'd% — dx'dx = dx'(I+H)" (I+H)dx — dx'dx
= dx'(H+H! + H' H)dx

H+H" + H'H) = 2E

~ 1
strain tensor of Q: E = §(H + H + HTH)
]- 8 7 8 m a 6
tensor coordinates: e;,, = 5 (8;; T (;;,; i Ek af‘;’: aﬁ:} )

LINEAR THEORY i,m,ke{l,2, 3}
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kinematics - Green strain tensor

,\ 1
strain tensor of 2: E = §(H +H' +H'H)

2\ Ox,, Ox; Oz,
i,m,k e {1,2, 3}

tensor coordinates: e;, = = ( u i u 4+ Z Uk uk)
aZBi .

€11 €12 €13
E = |e €99 €93

€31 €32 €33

= diagonal coefficients e; stretch: measure of fibre elongation

= off-diagonal coefficients e, shear: measure of the angle
between fibre angles
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kinematics - strain-displacement relation

... applying Voigt notation

e = Du
L - 0 .
€11 Oz g 0
22 ) 02 g Uy
€33 o 0 0 8_3:3
| 2o 9| |%
623 85E3 (9115'2 U
3 35:3 ) 911
| €12 _72 3_561 0 i
E _— e f— —_
" ! ox; 2 - ou; Ou;
5 Ou;  Ou, Z ouy. Ouy,
€; = 2e;; = —
“ “ Ox; Oz, Ou; Ou;j
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statics - state of stress

stress vector — stress tensor
= stress vector in direction of the surface normal n

= action of subfield C; on C, is replaced by a fictitious force dp

- d _ ~
t = lim —p stress vector at pomt P
da—0 da
b
tg = tlel—l-tgeg-l—tgeg
Ly
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statics - stress tensor of Cauchy

S11 S12 513
S = [sl Sy 53] = |S21 S22 823

531 S32 533

= stress tensor of the deformed configuration

= columns of the Cauchy stress tensor are the stress vectors on the
positive faces of the element
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statics - stress vector — stress tensor

D stress vector on a section

sum of surface vectors e;da; equals zero, since the
tetrahedron is closed

nda — elddl — egdalg — egdﬁg = 0
with da,, = e’ nda
1 unknown stress vector t on face BCD follows from
equillibrium state of the tetrahedron
0 = Eda, — §1da1 — §2da2 — égd&g
0 = tda— §nida — §nsda — 83nsda
t = Sn
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statics - equilibrium

T3 A
|
|
|
|
|
.
| N Sy 74 A ga
T3 (SQ + % daig) dzq dZs
A~ ~ K I .""h.__ 1:2
—Sodr1drs T~ | T~
e N xo
\
\
\
diy A
do

forces in zo- and x3-direction analogous
load acting on the unit volume — pp

081

Y F =0 = —8dirdis+ (81 +
8[)31

dl%l) dQAS'Q dﬁ%{g + ﬁp di“l d.if?g di‘3
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statics - equilibrium

T3 A
|
[
|
[
|
” [
[ A S A A A
T3 (SQ + % daig) dzq dZs
~ ~ K I .."h-.- :L‘2
—S9 d.’ll'l diEg —~ : ~—
e \ L2
\
\
\
dzy h
dia

081 08y 083
— +t - T ==
8:61 8:132 8333

+pq = 0

sum of the moments acting on the element is null in the state of equilibrium
= from this follows the symmetry of the Cauchy stress tensor

Sik — Ski
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statics - 1st Piola-Kirchhoff stress tensor

= consider a surface element of the reference configuration {2 which is

A

replaced to the instant configuration §)

da(=nda) >  da(=nda)

= 15t Piola-Kirchhoff tensor causes the same force df (definition!)

on da(=nda) & da(=nda)

df =
P = (detF)SF!

w

da = Sda = (detF)SF?da

1%t Piola Kirchhoff tensor
= stress coordinates are referred to the global base vectors

= 15t PK stress tensor is unsymmetric, in general, not in use!
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statics - 2nd Piola-Kirchhoff stress tensor

A

= PK1 force vector referred to the basis of the instant configuration €2
Pr = DPi1k€1 + P2re2 + P3kes
Pr = S1kb1 + Sopbo + s31bs

= bases vectors in {2 are the columns of the deformation gradient

P = FS

= relation between Cauchy stress tensor and 2" PK tensor

S = (detF)FSF!
S = (detF)FSF!

2"d Pjola Kirchhoff tensor is symmetric!

energetically conjugate stress tensor to the Green strain
tensor

© MRu 2014



statics - stress-strain relation

... linear elasticity — Hooke’s law

o = Ce
_0'11_ (a b b 0 0 O] _611_
099 b a b 0 0 0 €929
033 o b b a 00 0 €33
0923 - 000 c¢c 00 €923
031 0000 c0 €31
| 012 ] _O 0000 Cl L€12]
E(1—-v)
T U —w)
% (1—2v)
b= aqTy T
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partial differential equation

governing equations
1

strain — displm. e, = §(u@m + Ui + E UpmUki) X €S

k A
stress — strain = Si; = Climkl €k X € ()
equilibrium 0 — §@'1’1 + §i2,2 + §i3,3 -+ ﬁq@ X € ()
stress vector ti = & n Xe€o

eimn/ Sim  Green-Lagrange/Cauchy strain/stress tensor coordinates

Dirichlet (prescribed displacements)
x €I AN uely @ u = uy
Neumann (prescribed stresses)

xed) A tely - t; = ty

I, : boundary of prescribed displacements components

[y : boundary of prescribed stress vector components
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solution approach — FEM

weighted residual approach, cf linear theory of elasticity

= choice of a suited approximation rule for the displacement state
= definition of residuals which are not a priori satisfied

= choose of admissible/suited weight functions

= here: Bubnov-Galerkin approach: variation of displacements

= multiply residuals with weight functions

" integration over volume of the instant configuration
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spatial integral form

15t integral form

/ZZ 5%88@”‘ di +[Zc5uiﬁqidi}+
O =
/ Z(S’LL@ Zszmnm ) da—+
[Zéu@- t; — da+[ Z& —U;,)da = 0
L=

24 integral form (Principle of virtual work)

S au% = - A dv -y A

~

U; = Uj, z;, el

= spatial integral form derived for volume elements of the instant config.
= volume of the body in {2 is unknown!
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material integral form

integral equation is referred to the known reference configuration

replace ...

= unknow volume d7 with known volume dv

= Cauchy coordinates S;,,, with 2" Piola-Kirchhoff coordinates S;,
= jnstant coordinate Z; with ; + U;

on the left hand follows

5 mé(;‘j) Bo = S5 beny i do

7

on the right hand follows in analogy
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material integral form

Principle of virtual work

[ sensmde = [ 3 swado
Q 1 m Q 1
[ X duipada
I

i

N u; = U0 XEFU

= strains are nonlinear functions of the derivatives (Green-Lagrange)
= stresses (2"9 PK) are referred to base vectors of reference & instant config.

= conservative loads are assumed -2 independent of the displacements
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incremental equations —strategy

stepwise solution for the nonlinear equations 0, At, 2At, ..., 1
initial configuration is assumed to be known

solution at the end of each step

governing equations are incremental equations

consistent linearization leads to incremental equations



incremental equations

0 reference configuration

() instant configuration I, known from previous step
() instant configuration Il, unknown

U unknown displacement state at the end of step i
U known displacement state at beglnnlng of step i

Au  displacement increment from Q) to
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incremental equations

Ty state variables u, = u; + Au,

qio = qio + Agio

éij — € + Aeij
§z’j — Sij + AS@j
Total Lagrangian (TL) formulation > referredto ¢

Updated Lagrangian (UL) formulation - referredto §2
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incremental equations

state variables u; = u; + Au,

Jio = Qo + Agio

éij — €jj + Ae@-j
. . . §@'j — Sij + ASij
Incremental strain-displacement relationship
| 3
€ij = (Ui + Ui+ D )
k=1
3
1
= E(U” + Auy i+ uj; + Auj; + Z(Ulm + Augg) (up,; + Aug;))
k=1
1
= 5wy g+ Augj + Augit
3
Z U U j + Wk i At j + g jAug; + Aug jAuy ;)
k=1
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incremental equations

state variables u; = u; + Au,

Jio = Qo + Agio

eij = e+ Aeyj
o . . Sij = Sij + Asyj
Incremental strain-displacement relationship
e = e+ Aej+ Aej
. 3
€ij = i(ui,j + Uj; + Z Uk,iuk,j)
k=1
1 3
Aejj = B (Auz‘,j + Augit )y (ukiAug + Uk,jA“k,i))
k=1
=
N
Ae;; = 5 Z(Auk,iﬁuk,ﬂ
k=1
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incremental equations

state variables  u; = u; + Au;
qio = Gio + Agio
éij = eij + Ae@-j

§@'j — Sij + ASij
Variation of the state of displacements

ou = o(u+ Au)
= Ju+ é(Au)
= 0(Au)

Variation of the state of strain
(Séij = 5(Aem)
= §(Aef) + 6(Ae)))

3
1
5(Ael)) = §Z(Aum S(Auyj) + Aug; 5(Aug,))
k=1
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incremental equations

Governing equations in vector notation

/ZZM%)AWHf SN S(AeY) s dv =

057 05

Ar+/§ 5(Aui)Ap@-pdfu+/§ §(Aw;) Aty da
@y

I

with

Ar = /Zé(&ui)pipvar/ Z5(Aui)ti0da
Q- r,
- [ 3 sk sy
0T
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incremental equations

Governing equations in vector notation

/Q §(Aec)! C (Aec) dv + /

5(A6L)TC (Aer) dv + / Z (5(Agk)TS Agy. dv
Q Q &

— Afr—l—/é(Au)TAppdv—i—/ §(Au)! Aty da
Q

I'y
with

Ar = /5(Au)Tppdfu+/ 6(Au)Tt0da—f6(Aec+AeL)T0'dv
Q Iy Q
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incremental equations
Governing equations in vector notation

_Aenc_ i 2 Aug 1
Aeso,, 2 Aug o ) )
Aeor — Aess,, _ 1 2 Aug 3 A _ iuk !
Aea,, 2 [ (Auyo + Augy) Sk Uk,2
Aess,., (Aug s + Aug o) | Ay 3
| Aesi | | (Augy + Augg)
Aeiy, | Yo 2 (ukaAugg)
Aeso, Ei:l 2 (ur2Auy o)
Ae; — Aegs, _ 1 3 Zg=1 2 (up3Auy,3)
Aers, 2 1> (up1Augs + up 2 Aug 1)
Aeos, Zizl(quAuk,?) + up 3Au 0)
| Aesy, | S (upsAup g + up1Auy )
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