

# KATHOLIEKE UNIVERSITEIT

## Process Intensification using light energy

#### Tom Van Gerven

Department of Chemical Engineering





#### Content

- Photochemistry, photocatalysis, photosynthesis
- 3 case studies
  - Optical Fiber (Monolith) Reactor (OFMR)
  - Internally Illuminated Microreactor (IIMR)
  - Light Efficient Foils for open algae ponds (LEF)



# Light

# Light = the main form of energy for plants











#### • Light = an alternative form of energy for industry





Use of sunlight in photocatalytic pilot installation in Almeria, Spain (PSA, 2004)

Use of stripped optical fibers (TUD, 2006)





# The Electromagnetic Spectrum







### Photochemistry

Photochemistry can lead to more **sustainable** processes by:

- increased process selectivity to the required products
  - different chemistry
  - low/ambient process temperature
- <u>decreased energy consumption</u> in the process

   low/ambient process temperature
   use of solar light





# **Photochemistry is already implemented in industry, although limited** Some examples:

• photo-oximation of cyclohexane to cyclohexanone oxime (Toray, Japan)



- 170,000 ton/y (2003)
- conversion increases from 9-11% (others) to 80% (Toray)
- selectivity increases from 76-81% (others) to 86% (Toray)
- elimination of intermediate process steps
- from 1963 on





# **Photochemistry is already implemented in industry, although limited** Some examples:

#### • 1,1,1 trichloro-ethane from 1,1 dichloro-ethane



- 300,000 ton/y (1986)
- higher product yield, better selectivity than other processes
- lower process temperature than other processes (80-100°C vs. 350-450°C)
- main process route
- 1950's to 1990's (production banned)





**Photochemistry is already implemented in industry, although limited** Some examples:

• photo-oxidation of citronellol to rose oxide (Dragoco, Germany)



60-100 ton/y, main process route



Monnerie & Ortner, 2001





#### Current design in industry:

#### slurry reactor / immersion reactor with pressure or excimer lamps





# Photo(cata)lysis

- Photolysis
  - No catalyst
  - Deep UV (e.g. 250 nm) required high energy
- Photocatalysis

  TiO2, ZnO, ... (doping)
  visible light + UV (e.g. 384 nm) less demanding



#### Photocatalysis



Source: Guido Mul



#### **Air Purification**



TRACK DE LA COMPACTION DE LA COMPACTION



#### $NO + O_2 \rightarrow NO_2 \rightarrow NO_3^-$

Source: Guido Mul









 $H_2O_2 + CH' \rightarrow CO_2 + H_2O$ No catalyst
Andijk



 $O_2 + CH' \rightarrow CO_2 + H_2O$   $TiO_2$ Spain
Source: Guido Mul





# Photocatalysis in industry



*Aim* = 100 to 1000 times better

**Intensification needed!** 





#### **Increased** interest







#### Basic components







#### Basic components

#### efficient conversion of input energy into light







#### • Basic components







- Photon transfer
  - light intensity decays with distance
  - absorption on the way

#### solution is light source close to catalyst

- Mass transfer = OK in slurry reactors, but
  - expensive separation step
  - incomplete illumination

solution is immobilized catalyst

with excellent mass and photon transfer







#### Comparison of reactor configurations

| Photocatalytic reactor            | catalyst coated surface       |  |  |
|-----------------------------------|-------------------------------|--|--|
|                                   | per reaction liquid volume    |  |  |
|                                   | $(\mathbf{m}^2/\mathbf{m}^3)$ |  |  |
| slurry reactor                    | 2631                          |  |  |
|                                   | 8500-170000                   |  |  |
| (multi)annular/immersion reactor  | 27                            |  |  |
|                                   | 69                            |  |  |
|                                   | 133                           |  |  |
|                                   | 170                           |  |  |
|                                   | 340                           |  |  |
|                                   | 2667                          |  |  |
| optical fiber/hollow tube reactor | 46                            |  |  |
|                                   | 53                            |  |  |
|                                   | 112                           |  |  |
|                                   | 210                           |  |  |
|                                   | 1087                          |  |  |
|                                   | 1920                          |  |  |
|                                   | 2000                          |  |  |
| monolith reactor                  | 943                           |  |  |
|                                   | 1333                          |  |  |
| spinning disc reactor             | 50-130                        |  |  |
|                                   | 20000-66000                   |  |  |
| microreactor                      | 7300                          |  |  |
|                                   | 12000                         |  |  |
|                                   | 14000                         |  |  |
|                                   | 250000                        |  |  |

- Comparison based on catalyst coated surface per reaction liquid volume (m<sup>2</sup>/m<sup>3</sup>)
- The catalyst specific surface is not included in the comparison
- No evaluation of illuminated surface, illumination uniformity, minimization of energy loss on the way

- Microreactor and spinning disc reactor reach the values of slurry reactor
- Monolith reactor particularly suited for gas-liquid systems



# Case 1: OFR



# **Optical fibers**







# Case 1: OFR



10-fold increase of the illuminated catalyst surface per unit of reactor volume compared to an annular reactor (Lin et al., 2006)



#### Drawbacks:

- Decay of light: maximum length is 10cm
- Back-irradiation
- Fiber volume





#### **Optical Fiber Reactor**



#### **Problem:**

Light absorption & rapid diffusion

- Layer thickness

**Coating has 2 functions:** 

- catalyze surface reaction

- reflect light into the fiber

Fiber length limited to < 10 cm







#### **Optical Fiber Monolith Reactor**<sup>1</sup>

wastewater treatment

monolith merely distributor of optical fibers

#### Not exploited:

excellent mass transfer characteristics for gas/liquid systems



1. H. F. Lin, K. T. Valsaraj, J. Appl. Electrochem. 35 (2005) 699-708







1 coating

3 coatings

#### 9 coatings

Choi et al. 2001







An optimal catalyst coating satisfies sufficient light absorption with rapid reactant diffusion into the illuminated layer.

Choi et al. 2001







Wang and Ku, 2003





#### Monolith: catalyst support





Advantages:

light propagation process in the fiber Is NOT DEPENDENT on physical properties of the catalytic layer

Monolith multiphase advantages considered

(Carneiro, Mul, Moulijn)



















(Carneiro, Mul, Moulijn)





# Side Light Fibers (OFMR 2.1)











#### **Reactor comparison**











1g/L catalyst





#### **Results**

| Reactor                                                                                                   | R <sup>in</sup><br>[mol.s <sup>-1</sup> ] | ρ <sub>p</sub><br>[Einst.s⁻¹] | [mol.Einst <sup>1</sup> ] |                                                                 |
|-----------------------------------------------------------------------------------------------------------|-------------------------------------------|-------------------------------|---------------------------|-----------------------------------------------------------------|
| Annular reactor                                                                                           | 1.59×10 <sup>-6</sup>                     | 1.96×10 <sup>-4</sup>         | 0.008                     | Low efficiency of light utilization                             |
| Side light fiber reactor                                                                                  | 7.68×10 <sup>-10</sup>                    | 3.69×10 <sup>-7</sup>         | 0.002                     | Low exposure of catalyst to light                               |
| OFMR                                                                                                      | <b>2.28</b> ×10 <sup>-8</sup>             | 3.69×10 <sup>-7</sup>         | 0.062                     | Bad desorption from catalyst                                    |
| Top illumination reactor                                                                                  | 1.20×10 <sup>-7</sup>                     | 7.95×10 <sup>-7</sup>         | 0.151                     | but slurry reactor,<br>requiring post-separation<br>of catalyst |
| $\xi = \frac{\text{reaction rate (mol/s)}}{\text{photon flow (Einstein/s)}} = \text{photonic efficiency}$ |                                           |                               |                           |                                                                 |


(Carneiro, Mul, Moulijn)



#### Further work needs to be done



(Van Gerven, Mul, Moulijn, Stankiewicz)





Case 2: IIMR

#### Micro- and nanoscale illumination

#### LED devices

- robust, long-lasting (up to 100000 hrs vs. 1000 hrs for conventional lamps)
- low-energy consuming (100mW vs. 100-1000W for conventional lamps)
- miniaturisation

#### - Luminescent molecules interspersed with catalyst

- physical integration on the nanoscale
- very early research phase



Fedorov et al., 2002







Spectral Intensity





#### LED emission

Advantages of LED compared to conventional (Hg) lamps:

- Higher spectral purity
- Less heat: UV LEDs operate at less than 60°C, Hg bulbs at a factor 10 higher
- Instant on/off: stable, full output within milliseconds
- Compact size: also more robust, long lifetime, less sensitive to break
- Safety and Environment: VOC free radiation (no Hg); no production of O3 (ozone) because no deep UV radiation



# LED efficiency

| Lamp Type                  | Overall Luminous<br>Efficiency (LM/W) | Overall Luminous<br>Efficiency (Percentage) |  |  |  |
|----------------------------|---------------------------------------|---------------------------------------------|--|--|--|
| Incandescent               |                                       |                                             |  |  |  |
| 5 W tungsten               | 5                                     | 0.7                                         |  |  |  |
| 40 W tungsten              | 12.6                                  | 1.9                                         |  |  |  |
| 100 W tungsten             | 17.5                                  | 2.6                                         |  |  |  |
| Fluorescent                |                                       |                                             |  |  |  |
| 5-24 W compact fluorescent | 45-60                                 | 6.6-8.8                                     |  |  |  |
| 34 W tube                  | 50                                    | 7                                           |  |  |  |
| Halogen                    |                                       |                                             |  |  |  |
| Glass                      | 16                                    | 2.3                                         |  |  |  |
| Quartz                     | 24                                    | 3.5                                         |  |  |  |
| LED                        |                                       |                                             |  |  |  |
| White                      | 20-70                                 | 3.8-10.2                                    |  |  |  |



#### LED efficiency







#### Optimal wavelength?

#### Alachlor degradation by UV with/without TiO2

| Wavelength<br>(nm) | Total power<br>consumptio<br>n (W) | Photointens<br>ity (Einstein<br>I <sup>-1</sup> min <sup>-1</sup> ) | Direct<br>photolysis<br>quantum<br>yield | Photocataly<br>sis<br>quantum<br>yield | Photolysis<br>rate<br>constant<br>(min <sup>-1</sup> ) | Photocataly<br>sis rate<br>constant<br>(min <sup>-1</sup> ) |
|--------------------|------------------------------------|---------------------------------------------------------------------|------------------------------------------|----------------------------------------|--------------------------------------------------------|-------------------------------------------------------------|
| 254                | 70                                 | 1.80 x 10 <sup>-4</sup>                                             | 0.095                                    | 0.12                                   | 0.088                                                  | 0.112                                                       |
| 300                | 210                                | 6.64 x 10 <sup>-3</sup>                                             | 0.051                                    | 0.54                                   | 0.012                                                  | 0.128                                                       |
| 350                | 240                                | 3.24 x 10 <sup>-2</sup>                                             | 0.008                                    | 0.21                                   | 0.005                                                  | 0.129                                                       |

Photolysis: higher quantum yield with shorter wavelength Photocatalysis: higher quantum yield with medium wavelength

C. C. Wang, W. Chu, Chemosphere 50 (2003) 981 - 987





#### **Optimal wavelength?**

#### **Decomposition of NO**<sub>x</sub>

Highest decomposition rate (curve d) was observed at 385 nm

Hsu et al, United States Patent Application publication, 2009 US2009/0263298 A1







Set-up @ KU Leuven

#### **Batch mono-LED reactor**



Reactors











# Uniformity of light immission?



Fig. 5. Light (UV 365 nm) intensity distribution on the rotating disk.











M. Bass, E. W. Van Stryland, Handbook of Optics vol. 2 (2nd ed.), McGraw-Hill (1994)



#### Use of reflectors

**Comparison of Al foil reflector with no reflector** 



Irradiance measured in the centre of the reactor





# Optimise LED viewing angle









#### Comparison

| UV light<br>source                  | irradiance<br>(W/m²) | Pollutant | I.C<br>(ppm) | Reaction<br>time<br>(h) | Reaction<br>rate<br>(mol.l <sup>-1</sup> .s <sup>-1</sup> ) | Degradation<br>(%) |
|-------------------------------------|----------------------|-----------|--------------|-------------------------|-------------------------------------------------------------|--------------------|
| 1 LED<br>(our results) <sup>1</sup> | 9.055                | Phenol    | 10           | 4                       | 6.41 x 10 <sup>-9</sup>                                     | 87                 |
| 7 UVA lamps <sup>2</sup>            | 70.6                 | Phenol    | 20           | 3.5                     | 1.45 x 10 <sup>-8</sup>                                     | 86                 |

The reaction rate in Vezzoli et al. is 2.2 times faster compared to our test. However, the irradiance used in our experiments was 7.8 times less.

<sup>1</sup> Jamali et al., In submission

1. Vezzoli et al. Applied Catalysis A: General 404 (2011) 155-163



# **Optimal design?**

#### **Bucky Ball Batch Reactor**

- 20 hexagons and 12 pentagons
- LED on each corner











# From batch to flow







# **Optimal design**



Figure 1. Irradiance distribution Wm<sup>-2</sup> when the LED distance: 12mm; distance between LED array and catalyst surface a) 10 mm b) 8 mm





# **Optimal design**



Figure 3. Irradiance distribution Wm<sup>-2</sup> when the distance between LED array and catalyst surface: 8 mm; LED distance a) 10 mm b) 11.5 mm

(Van Gerven, Mul, Moulijn, Stankiewicz)





### Improving mass transfer





#### **Advantages**

- excellent temperature control
- excellent flow rate control

#### **Disadvantages**

- high pressure drop
- small throughput





# Photo(cata)lytic microreactors





Lamp housing



Lu et al., 2004



Fukuyama et al., 2004



#### Takei et al., 2005

(Van Gerven, Mul, Moulijn, Stankiewicz)





### **Research evolution**



(Van Gerven, Mul, Moulijn, Stankiewicz)





# Improving energy/catalyst efficiency

#### External light





Proof of concept still required!





#### Photosynthetic cell culturing (algae biotechnology)



closed photobioreactors (option 1)











#### Open Ponds vs. Closed Photobioreactors

| Parameter                                                               | Relative advantage  | Note                             |  |  |
|-------------------------------------------------------------------------|---------------------|----------------------------------|--|--|
| Contamination risk                                                      | Ponds < PBRs        | Just a matter of time for either |  |  |
| Productivity_                                                           | Ponds ~ PBRs        | NO substantial difference*       |  |  |
| Space required                                                          | Ponds ~ PBRs        | A matter of productivity         |  |  |
| Water losses                                                            | Ponds ~ PBRs        | Evaporative cooling needed       |  |  |
| CO2 losses                                                              | Ponds ~ PBRs        | Depends on pH, alkalinity, etc.  |  |  |
| O2 Inhibition                                                           | Ponds > PBRs        | O2 <u>major</u> problem in PBRs  |  |  |
| Process Control                                                         | Ponds ~ PBRs        | no major differences (weather)   |  |  |
| Biomass Concentra                                                       | ation Ponds < PBRs  | function of depth, 2 -10 fold    |  |  |
| Capital/Operating (                                                     | Costs Ponds << PBRs | Ponds >10 x lower cost!          |  |  |
| *Productivity can be higher if PBRs are vertical or in cold conditions. |                     |                                  |  |  |

CONCLUSION: Are PBRs better than ponds? Sometimes (e.g. in cold climate), sometimes not. Advantages greatly overstated. For biofuels can't afford PBRs, except for inoculum production



Photosynthetic Efficiencies in the Ponds and Photobioreactors (30% dilution/day)

Conclusion: No difference in productivity between them







#### The curve is strain dependent



Theoretical maximum for open ponds based on useful solar light intensity and photosynthetic conversion efficiency











Quest for optimal combination between open ponds and closed photobioreactors

e.g. Proviron, Belgium







#### Improved sunlight distribution in algae ponds













# Improving light ingress in pond







# LEF design by modeling



- Ray tracing technique
- Validation of model with literature and experimental data



# A sector

#### Indoor application

#### 1-Optimum Degree of Dilution

The maximum intensity of sunlight is a factor of geographic latitude. For Gran Canaries the relation between degree of dilution and expected enhancement in productivity is shown in this graph (for maximum light intensity at noon June 21<sup>st</sup>)

Enlargement Ratio Optimization for Maximum Intensity (June 21st, Noon)







# Indoor application

#### 2- Shape and Geometry



٢



# **Indoor** application

#### 2-Effect of Shape on Productivity





#### **Indoor** application

#### 3- Material

The material should have 1-Good optical properties 2-UV durable 3-Not brittle 4-Cheap and easy to form

The candidates are

1-PVC (food grade, UV durable) 2-PET 3-Mylar 4-PC



Since the size of distributor and amount of polymer is a considerable cost, it is preferred to reduce the amount of polymer. A hollow distributor filled with water is easier to implement.
(Ranjbar, Van Gerven, Stankiewicz)





# Indoor application

#### 3- Material





#### polycarbonate



#### acrylic



mylar

(Ranjbar, Van Gerven, Stankiewicz)



## **Outdoor** application

#### 1- Effect of orientation and daily variation



Average daily improvement • N-S = 1.750 • NW-SE = 2.077 • E-W = 2.766





### **Outdoor** application

### 2- Effect of annual variation

Average annual improvement

Ordinary LEFs=1.831







## LEFs in practice

- Concept is proven
- More experimental validation under way
- Current dilution ratio = 1.8, however ideal ratio = 4.1-6.5
- Further optimisation needed
- Pilot scale, costbenefit calculation still to come







## Conclusion

- Light energy is still under-utilised
- Advances require collaboration between chemical engineers and mechanical engineers/physicists
- Due to the energy crises and the advances in light technology, interest is growing again
- Process intensification required to increase efficiency/productivity