Measurements for water

A.M.J. Coenders

Waterbalans: Rainfall

 Delft
 Delft

 University of
 Technology

 Challenge the future
 Challenge the future

How to measure rainfall?

Maisbich: 1.17 km²

How to measure rainfall?

Rhine: 185 000 km²

3

Measuring rainfall

Options:

- 1. Point scale:
 - Accurate
 - Small scale (Δx , Δt)
- 2. Areal:
 - Less accurate
 - Large scale (Δx , Δt)
 - Often free downloadable

Considerations:

- Objective
- Available money
- Available labour
- Accessibility site
- Scale

Point observations

Measuring rainfall at point scale

Considerations:

- Location
- Height
- Sample interval
- Spatial distribution
- Rain gauge type

Location and Height

- Reduction:
 - at 1.50m from ground level 84-96%
 - at 0,40m from ground level 93-97%
- Solutions:
 - screens
 - turf wall

Screens

• Alter wind shields

Screens

• Nipher screen

Turf wall

TUDelft

Rain gauges types: Manual rainfall collector

Rain gauges types: Tipping bucket

Rain gauges types: Tipping bucket

• Data example

TUDelft

Rain gauges types: Tilting siphon

Rain gauges types: Tilting siphon

• Data example

Rain gauges types: Optical

16

Rain gauges types: Heated and weighing

 \Rightarrow Snow

Rain gauges types: Acoustic

• Disdrometer

Areal observations

Areal rainfall: Radar

- Different frequencies & pulses
- Nowadays: pulse-Doppler radars (+ motion)

- Inaccuracies due to:
 - Curvature earth
 - Light rainfall no response
 - Shielding

Areal rainfall: Remote Sensing

- Thermal Infra Red (Meteosat, MSG, GOES)
 - Cold cloud duration: $T_{cloud top} < -40 \text{ °C} => rain$
 - Suitable for:
 - Convergence & convective storms (semi-arid regions)
- Microwave imagers (SSM/I, AMSU-B, TMI, AMSR-E)
 - Scattering (quantity & ice particle size)
 - Emission of brightness temperature (water vapour)
 - Non-suitable for:
 - Orographic lifting & shallow convective storms (warm particles)

Areal rainfall:

Some recent rainfall algorithms

• FEWS RFE 2.0

- METEOSAT Infrared (IR) satellite data
- Special Sensor Microwave/Imager (SSM/I)
- AMSU-B
- Ground stations

Tropical Rainfall Measuring Mission (TRMM)

- On board sensors (microwave, IR, Radar)
- External microwave sensors (AMSU-B, SSM/I, AMSR-E)
- External IR
- Ground stations

Winsemius, 2009

23

Concluding...

 \Rightarrow RS is a great source, but you still need ground stations

 \Rightarrow In 2 weeks, exercise on accuracy of ground stations

