Measurements for water

A.M.J. Coenders

Waterbalans: Soil Water

Water in the soil

Unsaturated zone/ Vadose zone

Why is soil moisture important?

(Please note that these levels are indicative only. The soil water storage ability will vary between sites due to the influence of the sites soil type, aspect and crop type.)

TUDelft

Methods to measure soil moisture

Direct

- Gravimetric method
- Indirect by di-electric permittivity
 - Capacitance probe
 - Time Domain Reflectrometer (TDR)
 - Frequency Domain Reflectometry (FDR)
- Indirect by thermal conductivity
 - Heat Pulse Sensors

Gravimetric method

$$\theta = \frac{M_{sample} - M_{dry}}{M_{sat} - M_{dry}} = \frac{V_{w}}{V_{t}}$$

- + Cheap and straightforward
- Destructive and not continue

Dielectric permittivity

- Permittivity (ε) is a measure of the ability of a material to be polarized by an electric field
- $\kappa = \epsilon/\epsilon_0 \ (\epsilon_0 \text{ vacuum} = 8 \text{ x } 10^{-12} \text{ F/m})$
- Dielectric permittivity is function of water content
 - κ vacuum = 1 (per definition)
 - κ soil = 2-5
 - к water = 80

Capacitor probe

• Soil as a capacitor, $C = \kappa A/S$

10HS MOISTURE SENSOR

DECAL

• Measures charge time, t

 $\kappa =$

 $\frac{RA}{S}$

Time Domain Reflectometry (TDR)

 Measures travel time of high frequency electromagnetic wave

$$\kappa = \left(\frac{tc}{2L}\right)^2$$

- with L the transmission line, c= speed of light
- t short => ϵ low => θ low
- expensive
- + highly accurate, less sensitive for salinity and temperature

Frequency Domain Reflectometry (FDR)

- Measures frequency difference transmitted and reflected pulse
- + cheaper than TDR
- needs per soil type calibration

Heat Pulse Sensors

$$\rho c_{p} = 1.92 X_{m} + 2.51 X_{o} + 4.18 \theta_{v}$$
$$T(r,t) = \frac{Q}{4\pi\kappa t} \exp\left(\frac{-r^{2}}{4\kappa t}\right)$$

$$\rho c_p = \frac{q}{\exp \pi r^2 \Delta T_M}$$

Methods to measure soil moisture

Direct

- Gravimetric method
- Indirect by di-electric permittivity
 - Capacitance probe
 - Time Domain Reflectrometer (TDR)
 - Frequency Domain Reflectometry (FDR)
- Indirect by thermal conductivity
 - Heat Pulse Sensors

