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Lecture notes version 27 Sep 2011



• Stress causes strain (shape change).

• Modes of loading:
ties carry tension (cables)

columns carry compression (tubes are less prone to buckling 
(knikken) than solid rods)

beams carry bending moments (wing spar)

shafts carry torsion, pressure vessels contain internal pressure.

• Stiffness: resistance to shape change that is elastic (returns to original
shape when load is released (measured by elastic modulus, E).

4.1 Introduction and synopsis



• Strength is resistance to permanent deformation or total failure.
Measured by elastic limit, σy, or tensile strength, σts.

• Often stiffness and strength are combined with density, ρ.

• The first material property chart considered: the modulus-density
chart.

• Note: modulus and density for pure materials cannot be tailored; a
function of the atomic mass, atomic packing, and bond strength.



Figure 4.1 Measuring density by Archimedes’ method.

• Density – mass/volume.
• Accurate measurements of density can be made by the double

weighing method.  When immersed the sample feels an upward
force equal to the weight of the liquid it displaces.

4.2 Density, stress, strain, and moduli

“Weight” would be better than “Mass”

Derive how?



Figure 4.1 Measuring density by Archimedes’ method.

• Density – mass/volume.
• Accurate measurements of density can be made by the double

weighing method.  When immersed the sample feels an upward
force equal to the weight of the liquid it displaces.

4.2 Density, stress, strain, and moduli

“Weight” would be better than “Mass”

ρV = m1                 (1)
ρflV = m1–m2         (2)

Divide (1) by (2)



Figure 4.2 Modes of loading
and states of stress.

• Modes of loading
tie: axial tension
column: axial compression
beam bending: axial tension on one side, compression on the other
shafts: twisting or torsion (shear)
pressure difference across a shell: bi-axial tension or compression.



Figure 4.3 The definitions of stress, strain and
elastic moduli.

Stress: (spanning) force per
area, F/A.

• Simple compression and
tension: applied normal to a
face of a reference element,
 σ = F/A.

• Forces applied parallel to a
face create a state of shear in
the element with shear stress,
τ = Fs/A.

• Equal tensile or compressive
stress on all six faces:
hydrostatic pressure, p.

• Units are MPa (MN/m2) = 10
bar

Sign convention: Pressure = positive when pushing
Stress has other sign



 

Example



Strain (rek) is a response to
stress.

• It is dimensionless.

• Tensile or compressive
strain:

ε = δL/L0

• Shear strain:
tan(γ) = w/L0 ≈ γ

• Volumetric strain (dilatation):
Δ = δV/V

Figure 4.3 The definitions of stress, strain and
elastic moduli.



Moduli

• In the linear elastic regime
strain is proportional to
stress.

• Tensile or compressive:
σ = Eε, where E is Young’s
modulus. (Eq. 4.6)

• Shear: τ = Gγ, where G is
the shear modulus. (Eq. 4.7)

• Pressure: p = KΔ, where K is
the bulk modulus. (Eq. 4.8)

Figure 4.3 The definitions of stress, strain and
elastic moduli.



Figure 4.4 Tensile stress–strain curves for ceramics, metals and polymers.

• Representative stress-strain curves for
different classes of materials.

• Note the elastic limit and yield and tensile
strengths, and magnitude of the strains.

• A0 is the initial cross sectional area
• A is the actual cross sectional area, which

may become smaller than A0 as the
loading proceeds

True stress F/A

Ductile metals



Relating the moduli through Poisson’s ratio, ν.

• Generally stretching in one direction leads to contraction in the other
two.
ν is the negative of the ratio of the lateral or tranverse strain, εt, to
the axial strain, ε.
In tensile loading ν = –εt/ε.  It is usually about 1/3.

• For an isotropic material

• With ν = 1/3:  G ~ 3E/8 and K ~ E

• For elastomers ν ~ 1/2 and G ~ E/3 and K > E; rubber is easy to
stretch in tension (low E) but if the shape is constrained or the load
is hydrostatic it is very stiff (high K).

K =
E

3(1! 2")
G =

E
2(1+!)



 

Example



Elastic energy

• A force F acting through a displacement dL does work FdL.

• A stress σ = F/A0 acting through a strain increment dε = dL/L does
work per unit volume dW = FdL/A0L = σdε (J/m2).  In an elastic
material this work is stored as elastic energy.

• The work done per unit volume as the stress is
increased from zero to a final value σ* is just the
area under the stress-strain curve.

W = ∫0→σ∗σdε  =  ∫0→σ∗(σ/E)dσ  =  σ*2/2E

• Measuring E: usually done dynamically, vibrating beam or velocity of
sound in the material; both depend on (E/ρ)1/2.

Elastic part of the stress-strain curve onlyWhole stress-strain curve



PI question

Why is the expression

for the work per unit volume W needed to strain a certain
material from zero stress to a final stress σ* = F*/A0 only
valid for σ* not larger than the yield stress σy?

1. For larger strains, the integral should be taken
along the ε axis

2. Because, if you remove the force, you always
get some of the energy back

3. The expression is valid until the stress-strain
curve curves downward

4. For larger strains, σ and ε are no longer
proportional

W = ∫0→σ∗(σ/E)dσ  



 

 

Example



Stress-free strain

• Other stimuli cause strain (e.g., magnetic and electric fields:
magnetostrictive and piezo-electric materials).  These strains are
generally very small but can be accurately controlled and at high
frequency; used in precise positioning and sensors.

• Thermal expansion: thermal strain is proportional to the temperature
change, εT = αΔT.  α is the thermal expansion coefficient.

• ‘Stress-free’ strains (piezo, thermal, etc) do cause stresses: if the
material is constrained. Misleading term.

Figure 4.5 Stimuli leading to strain.



Figure 4.6 The modulus–density chart.

• The modulus-density chart; the modulus spans 7 decades while
densities vary over a factor 2000.

4.3 The big picture: material property charts



Figure 4.7 The modulus–relative cost chart.  Cost is normalized to mild steel, the most used
material (the CES software contains material prices, regularly updated).

• The modulus-relative cost chart; often we want to minimize cost, not
weight, as the overriding objective of a design.



Anisotropy

• Glasses and many polymers are generally disordered down to the
atomic scale, with little directionality of properties.

• Polycrystalline metals and ceramics have more or less randomly
oriented ‘grains’ (= small crystals) and are also roughly isotropic on
average.

• For single crystals and drawn polymers and fibers anisotropy
becomes important – properties depend strongly on direction of
measurement.

• Property charts reflect anisotropy by having property bubbles for
each loading direction (e.g. Wood, previous chart).

Grains in a metal, ~µm diameter scale



• Density; atoms differ greatly in mass but not so much in size –
therefore density is largely controlled by atomic weight, with
secondary effects from size and packing.

• Metals: high density (heavy atoms, Al(M=27)→Ti(48)→Fe(56)→
Ag(108)→Pb(207), tightly packed)

• Polymers: low density (carbon (12) and hydrogen(1)-based,
loosely packed)

• Ceramics: intermediate (contain high fraction of light elements, e.g.
C(12), N(14), O(16), medium packing)

• Atom diameters in nm: very small (0.05, H), small (0.15, C), medium
(0.25, many metals), large (just a few: 0.4, K, Ba)

4.4 The science: what determines the density and stiffness?



Figure 4.8 (a) Close-packed layer of spheres, layer A. (b) Second layer, B, nesting in the first; repeating
this sequence gives ABAB . . . or CPH stacking. (c) Third layer, C, can be nested so that it does not

lie above A or B; if repeated this gives ABCABC: FCC stacking.

Atom packing in metals and the unit cell
• Crystalline structures: view as arrangements of hard, spherical balls.
• Close-packed structures: a common feature in 2D and 3D.  Stacking

sequence determines HCP (hexagonal close-packed, e.g., Mg, Ti)
versus FCC (face-centered cubic, e.g., Cu, Ag, Au, Al).  Both with
0.74 packing fraction.



Figure 4.9 (a) A square grid of spheres; less efficient packing than FCC or HCP. (b) A second layer, B,
nesting in the first; repeating this sequence gives ABAB . . . packing. If the sphere spacing is such

that the gray spheres lie on the corners of a cube, the result is the non-close-packed BCC structure.

Another common arrangement
• BCC – body-centered cubic; not close-packed (0.68). Fe, Ta, W.



PI question

Nature has many different ways of packing atoms. What is
the main reason for all these differences?

1. Masses of the atoms
2. Diameters of the atoms
3. Force fields of the atoms
4. Valence of the atoms



Figure 4.10 (a) An irregular arrangement of spheres in 2D.
(b) Extending this in 3D gives a random or amorphous structure.

Amorphous structure

• Not crystalline, disordered, lower packing fraction. 0.64 at best.



Figure 4.11 Unit cells. All the atoms are of the same type, but are shaded differently to emphasize
their positions. (a) The close-packed hexagonal (CPH) structure. (b) The close-packed face-

centered cubic (FCC) structure. (c) The non-close-packed body-centered cubic (BCC) structure.
Arrows show nearest neighbors.

Unit cells

• Crystalline materials are characterized by their unit cell.
• Most common: FCC, BCC, CPH (=HCP)



Figure 4.12 Unit cells stacked to fill space. (a) The hexagonal cell. (b) The cubic cell. (c) A cell
with edges of differing length that do not meet at right angles.

• Unit cells pack to fill space and create a crystal lattice; the points at
which cell edges meet are called lattice points.



Unit cells

Careful: figures like these show atoms too small.
In reality they “touch” each other

a

FCC unit cell with real-sized atoms. The volume of the cube is a3.
We can count that the unit cell contains 4 full atoms.
The face diagonal (a√2) is equal to 2 atomic diameters or 4 atomic radii R.
From this we can calculate the packing fraction.
When we know a and the mass m, we can compute the density.



FCC unit cell with real-sized atoms. The volume of the cube is a3.
We can count that the unit cell contains 4 full atoms.
The face diagonal (a√2) is equal to 2 atomic diameters or 4 atomic radii R.
From this we can calculate the packing fraction.
When we know a and the mass m, we can compute the density.

Unit cells

a
Solutions for packing fraction and density

4R = a√2 → R = a(2–3/2).
Vatom = (4/3)πR3 = (4/3)πa3(2–9/2).
V4 atoms = (16/3)πR3 = (16/3)πa3(2–9/2).
Vcube = a3.
Packing fraction = V4 atoms/ Vcube = (16/3)π(2–9/2) = 0.74.

Suppose a = 0.400 nm and matom = 60 u = 60 × 1.66×10–27 kg.
Density ρ = 4matom/a3 = 6225 kg/m3.



Figure 4.13 Unit cells of compounds. (a) Tungsten carbide. (b) One form of silicon carbide.

Atom packing in ceramics
• Generally compounds made of two or more elements (A and B)
• A pair of atoms (A+B) is associated with each lattice point in the

structures below.



Figure 4.14 Two alternative structures for silica, the basis of most glasses.
(a) Crystalline silica. (b) Glassy or amorphous silica.

Atom packing in glasses
• Compounds often resist crystallization on freezing and remain

amorphous (some metal alloys also can behave this way when
rapidly cooled – amorphous metallic ‘glasses’).

• Silica (SiO2) is commonly amorphous and forms the basis of almost
all glasses (mixed with Na2O – soda glass; with B2O5 – Pyrex).



Figure 4.15 Polymer chains have a carbon–carbon backbone with hydrogen or other side groups. The
figure shows three alternative representations of the polyethylene (PE) molecule.

Atom packing in polymers
• The backbone of a high molecular weight polymer is a long chain of

carbon atoms to which side groups are attached.
• The simplest is polyethylene, PE, (-CH2-)n.  The chains have ends,

here CH3.  PE is made by polymerization (=snapping together) of
ethylene molecules, CH2=CH2; the double bond is broken allowing
links to carbon neighbors on both sides.



Figure 4.16 Five common polymers, showing the chemical make-up. The strong carbon–carbon bonds
are shown in red.



Figure 4.17 (a) Polymer chains have strong covalent ‘backbones’, but bond to each other only with weak hydrogen bonds
unless they become cross-linked. (b) Cross-links bond the chains tightly together.

The strong carbon–carbon bonds: solid red lines.

• Polymer molecules bond together to form solids; the chains of a linear
polymer (103 to 106 units in length): strongly bonded along the chain.

• If separate chains attract each other via weak ‘hydrogen’ bonds we
get an amorphous thermoplastic.  Melts easily and moldable.



• In local regions of good chain alignment the hydrogen bonds can
produce crystallites (1-10 µm) which scatter light.

Transparent polymers like PC, PMMA, PS have no crystallites (are
amorphous), while PE and nylon (PA) are translucent.

• Replacing hydrogen bonds with stronger covalent C-C bonds
(cross-linking) produces important changes in properties.

Elastomers have a few such cross-links and thermosets have
many.  Covalent cross-links are not broken by heating – not
thermally molded and difficult to recycle.



Figure 4.18 (a) Chains in polymers like PP form spaghetti-like tangles with no regular repeating pattern
- amorphous or ‘glassy’. (b) Some polymers form regions in which the chains line up and register,

giving crystalline patches - partly crystalline polymer structure. (c) Elastomers have occasional
cross-links between chains, but these are far apart, allowing the chains between them to stretch.

(d) Heavily cross-linked polymers like epoxy inhibit chain sliding.



Figure 4.19
Atoms in solids are linked by bonds that behave

like springs. Bond stiffness S = F/δ. Stretching or
compressing the bond by displacement δ stores
energy U =∫0→δ f(x)dx =Fδ/2. The equilibrium

atom separation is at the bottom of the energy well.

Cohesive energy and elastic moduli:
crystals and glasses

• Cohesive energy – energy per mol to
separate atoms of a solid completely;
higher cohesive energy – higher
modulus (strong and stiff bonds).

• Bond energy is minimum at
equilibrium spacing, a0.  A spring
stretched by δ under a force F has a
stiffness S = F/δ.

• Relating stiffness to modulus: pulling
two atoms apart by δ gives a strain of
ε = δ/a0. The stress is given by σ =
F/a0

2 (force/area). Thus σ = Sε/a0.
• From σ = Eε (Hooke’s Law): E = S/a0.
• For a large atom with a weak bond (S

~ 0.5 N/m) we get a lower limit of ~ 1
GPa for E for a true solid (exceptions:
foams and elastomers).

Towards
complete
separation

Force f

Displacement x

Displacement x

F

δ

δ



Bond type Examples      Stiffness, S (N/m) E (GPa)
___________________________________________________________

Covalent Carbon-carbon 50 –180 200 – 1000

Metallic All metals 15 – 75 60 – 300

Ionic NaCl 8 – 24 32 – 96

Hydrogen bond PE 3 – 6 2 – 12

Van der Waals Waxes 0.5 – 1 1 - 4

Table 4.1 Bond stiffnesses

Young’s modulus E = S/a0

Young’s modulus,

Volume occupied by an atom Vatom = a0
3

Question
How large is the atomic distance a0
in these five cases?

Answer
a0 = S/E
unit is (N/m) / (GPa) = (N/m) / (109 N/m2) = 10–9 m = nm

0.25–0.18

0.25

0.25

1.5–0.5

0.5–0.25



Figure 4.20 The stretching of an elastomer. Here the
structure has been stretched to twice its original length.
The stretching causes alignment, producing crystal-like
regions. Thermal vibration drives the structure back to

the one on the left, restoring its shape.

The elastic moduli of elastomers

• Consider the bonds between
chains (except for cross-links) to
be very weak at room
temperature (they have ‘melted’)
– the glass temperature, Tg, is
below RT (=room temperature).
Segments freely slide over one
another and the material would
be a viscous liquid if not for the
cross-links.

• Stretching produces local
alignment (strain induced
ordering).



Mixtures of atoms

• Solid solution – like sugar dissolved in tea, but in a solid.

• Many properties are changed significantly by making a solid solution
(as we will see) but density and modulus are not.

• Rule of mixtures for density:

ρ* = fρA + (1 – f)ρB         (Vegard’s law),

     f is the fraction of A atoms.

• To influence density and modulus we can turn to composites and
foams (hybrid materials). Next.



Figure 4.21 Manipulating the modulus by making
composites, mixing stiff fibers or particles into

a less-stiff matrix.

4.5 Manipulating the modulus
and density

• Composites: embedding
fibers or particles in a
continuous matrix of a
polymer (PMC), metal
(MMC) or ceramic (CMC).

• Composites can have high
stiffness and strength per
unit weight and for MMCs
and CMCs good high T
performance.

• For reinforcement r and
matrix m the rule of mixtures
is exact for density:
ρ* = fρr + (1 – f)ρm  (Eq. 4.20)
f is volume fraction.



The modulus of a composite is bracketed by 2 bounds.

• The upper limit, EU*, assumes the two components strain equally
(springs in parallel) giving:

EU* = fEr + (1 – f)Em                                      (Eq. 4.21)

• The lower bound, EL*, assumes the two components carry the same
stress (springs in series) giving:

EL* = EmEr / [fEm + (1 – f)Er]              (Eq. 4.22)

Er

Em



Figure 4.22 Composites made from a matrix m with a reinforcement r have moduli and densities,
depending on the volume fraction and form of the reinforcement, that lie within the gray shaded

lozenge bracketed by equations (4.21) and (4.22). Here the matrix is a polymer and the
reinforcement a ceramic, but the same argument holds for any combination.

Note notation.
In equations:
EU* and EL* 



PI question

In which case is the wheel compressed most?

1. A
2. B
3. Equally far

A                                       B



 

Example



Note notation.
In equations:
EU* and EL* 

glass

PP

fib

par



Figure 4.23 Manipulating the modulus by making a foam—a
lattice of material with cell edges that bend when the foam

is loaded. Closed cell faces are also possible.

Foams
• Polymer foams are common (insulation, flotation, cushions,

packaging) but metal, ceramic, and even glass foams are now
becoming important.

• Light, low modulus.
• Cellular solid is characterized by relative density = fraction of foam

occupied by solid, ρ*/ρs = (t/L)2  (t<<L)
3rd direction (vertical) is not reduced by (t/L)



Figure 4.24 Foaming creates new materials with lower modulus
and density. Low modulus is good for making packaging and
protective shielding; low density is good for lightweight design

and for flotation. The red arrow is a plot of equation (4.24).

• When foam is loaded the
cell walls bend and the
behavior can be modeled
to give the foam modulus:

E*/Es = (ρ*/ρs)2   (Eq. 4.24)

• Allows for very low
modulus materials


