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Chapter 5
Flex, sag and wobble: stiffness-limited design

5.1 Introduction and synopsis

« Strength is seen to be critical, but
stiffness is often taken for granted.
E.g. London Millennium Bridge,
Tacoma Narrows Bridge

* Real loading situations can be
decomposed into the common
modes of tension, compression,
bending, and torsion.

 Here we explore standard solutions
to elastic problems, use them to
derive material limits and indices,
plot them onto material property
charts, and finally review case
studies.




5.2 Standard solutions to elastic problems

I. Extension or compression

Il. Bending of beams

lll. Torsion of shafts

IV. Buckling of columns and plates

V. Vibrating beams and plates



l. Elastic extension or compression

o =F/A; ¢ = o/E; ¢ = 8/L,; thus the relation between load F and
deflection 6 is

d = L,F/AE
and the stiffness S (not the same as E itself) is defined as

S=F/5=AE/L, (Eq.5.2)

the shape of the cross-sectional area does not matter
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Figure 5.1 (a) A tie with a cross-section A loaded in tension. Its stiffness is S = F/6.



Oj ®
Il. Elastic bending of beams / Y2

“‘Moment” = “Torque” = (Force) x (distance from the center)

2L

A beam loaded by a bending moment M has its axis deformed to
curvature x = d?u/dx?, u is the displacement parallel to the y-axis.

Curvature generates a linear variation of strain (and stress),
tension (+) on one side, compression (—) on the other
Beam theory: the stress profile caused by a moment M is given by
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Figure 5.1 (b) A beam of rectangular cross-section
loaded in bending. The stress o varies linearly from
tension to compression, changing sign at the neutral
axis, resulting in a bending moment M. R is the
radius of curvature.
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| is the second moment of inertia: | = |, =fsecﬁony2b(y)dy;
(Don’t confuse moment M with moment I)

y is measured vertically from the neutral axis and b(y) is the width
of the section at y (in z-direction)

| characterizes the resistance to bending and depends on both size
and shape.

M/x = El = the flexural rigidity, related to F/6 = stiffness
The stiffness for a beam of length L with a transverse load F is

S=F/8=C,EIIL? (C, in Fig. 5.3, two pages further)



Example

Example 5.1 Beware: Now the Z axis is called the X axis

(a) A beam has a rectangular cross with height » and width &. Show that the second
moment of area is I = bh*/12.

(b) A steel ruler is 300 mm long with a width « = 25 mm and a thickness # = 1 mm.
Calculate the second moments of area Ixx and Iyy.(i.e. for bending around X axis and Y axis)
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Figure 5.2 Cross-section area and second
moments of sections for four section shapes.
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Figure 5.3 Elastic deflection of beams. The deflection §

of a span L under a force F depends on the flexural
stiffness E/ of the cross-section and the way the

force is distributed. C, is defined in equation (5.5),

S = F/s = C,EI/L3



Example

Example 5.2

(a) The ruler in Example 5.1 is made of stainless steel with Young’s modulus of
200 GPa. A student supports the ruler as a horizontal cantilever, with 250 mm
protruding from the edge of a table and hangs a weight of 10 N on the free end.
Calculate the vertical deflection of the free end if the ruler is mounted with: (i) the
X-X axis horizontal; (ii) the Y-Y axis horizontal. (Ignore the deflection caused by
the self-weight of the ruler.)

Answer.
-< 250 -

’////////2 |




lll. Torsion of shafts

 Atorque, T, on an isotropic bar of uniform cross-section generates
a shear stress, t. For circular sections t/r = T/K where K measures

the resistance to twisting (analogous to |, resistance to bending).
« For circular sections K = J, where J = | ,,27r3dr; the polar second

moment of area (yet another “moment’) For other shapes K<J.

« The twist per unit length, 6/L obeys t/r = T/K = GO/L; G is the shear
modulus; the torsional rigidity, GK = T/6.
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Figure 5.1 (c) A shaft of circular cross-section
loaded in torsion. Figure 5.4 Elastic torsion of circular shafts. The stress
in the shaft and the twist per unit length depend
on the torque T and the torsional rigidity GK.



Example

Example 5.3

(a) Derive an expression for the polar second moment of area of a tube having a hollow
circular section with inner radius r, and outer radius r,.

(b) A brass rod with shear modulus 40 GPa, length 200 mm, and having a solid circular
cross-section with diameter 10 mm, is twisted with a torque of 10 Nm. What is the
angle of twist?



Summary

Stretching

Torsion

Load

F (force)

M (bending moment)

T (twisting torque)

Stress and effect

o = FIA = E8/L,

oly = M/l = Ed?u/dx?

t/r = TIK = GO/L

Resistance

Stiffness S = AE/L,

Flexural rigidity El

Torsional rigidity GK

Fig. 5.2

AlL,

K




IV. Buckling of columns and plates

» A slender elastic column or plate can fail by buckling in
compression at a critical load, F_, given by F_., = n?m?EI/L?

n depends on end constraints; it is the number of half wavelengths
of the buckled shape. Slight misalignment can reduce F

crit*

| L > n

F 1
] m 5 Free to rotate and translate
M_F 1 Free to rotate

F
i ‘— 2 | Clamped

Figure 5.5 The buckling load of a column of length L depends on the flexural rigidity E/
and on the end constraints; three are shown here, together with the value of n.



V. Vibrating beams and plates

Any undamped system vibrating
at one of its natural frequencies
reduces to a problem of a mass m
attached to a spring of stiffness k;

the lowest natural frequency of
such a system is f =(1/2n )12,

For common geometrje
constraints f = (1/2mn)
and thus (because m =

)1/2

f = (C,/2m)(I/A)2L2(E/p)""2
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Figure 5.6 The natural vibration modes of
beams clamped in different ways.

Power 3: incorrect in book (Eq. 5.11)




Pl question

The speed of sound in a material is equal to V(E/p). In

which material has the speed

of sound the highest value?

1. X Glass
2. *Copper alloys
3.%¢Lead alloys
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Exercise

How much is the speed of sound in lead alloys? Si¢

Al;Og3
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Pl question

We compare the forces at which a clamped solid round rod

and a clamped tube of the same length will begin to buckle.

The rod and tube have equal outside diameters 7.
For which wall thicknesses 1s the tube weaker than the rod?

For all wall thicknesses
For thicknesses ¢ smaller than »/4

For thicknesses ¢ greater than »/4

> » b=

The tube is never weaker than the rod
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5.3 Material indices for elastic design

Let’'s implement the design process

« Translation
» Screening, based on constraints
* Ranking, based on objectives

 Documentation to give greater depth




Minimizing weight: a light, stiff

tie-rod

Constraints: length L,, maximum
extension 8* at force F, thus
stiffness at least S* = F/8*,
reasonable toughness

Objective: minimize mass
Free variables:
material, cross-sectional area A

Objective function — equation
describing the quantity to be
maximized or minimized,;
here m = AL,p

Figure 5.7 (a) A tie with cross-section
area A, loaded in tension. Its
stiffness is S = F/d where F is the

a
load and § is the extension. (@)

Constraint: S* = AE/L,

Eliminate free variable from
objective function, here A:

m = S*L,%(p/E)

S* and L, are specified; the
lightest tie-rod uses a material
with the smallest p/E

Invert to consider maximum
values yielding material index M,
= E/p — the specific stiffness

_ Force F
Section area A Deflection &
=0 Jo-

- Lo =



Young’s modulus, E (GPa)
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Minimizing weight: a light, stiff
tie-rod
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Choose material with maximum
material index M, = E/p — the

specific stiffness.

The line on the left has E/p = 10
GPa/(Mg/m?3). Shift line
upwards for higher values.
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Minimizing weight: a light, stiff panel

« Constraints: length, L, width b, maximum deflection 9, stiffness of S*
« Objective: minimize mass

* Free variables: material, thickness h

 Loaded in bending with a central load, F

* Objective function: m = Alp = bhLp

« Constraint: S* = C,EI/L3

« | =bh3/12

- Eliminate free variable h: m = (12S*/C,b)"3bL?(p/E"?)

- S* L, b, C, all specified; seek smallest p/E'® or maximize the
material index M, = E%/p

hl lj

f [ |
Figure 5.7 (b) A panel loaded in bending. Its stiffness is \ Force F 111
S = F/5, where F is the total load and § is the A [ |
bending deflection. \

o
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Minimizing weight: a light, stiff beam

Constraints: the shape must be self-similar (all dimensions change
in proportion as the overall size is varied, a simplification) length, L,
square section, maximum deflection 9, stiffness of S*

Objective: minimize mass

Free variables: material, area of cross section

Loaded in bending with a central load, F

Objective function: m = ALp = b°Lp

Constraint: S* = C,EI/L3

| = b%/12 = A2/12 [other shape: always a constant times A?]
Eliminate free variable b: m = (12S*L3/C,)"2L(p/E"?)

S*, L, C, all specified; seek smallest p/E'? or maximize the material
index M, = E"?/p; other shapes give the same answer, only with a

different factor than 12. Square section -
area A = b2 orce F
. _ b l
Figure 5.7 (c) A beam of square section, loaded b D
in bending. Its stiffnegs is S = F/d, where F
BV 51

is the load and § is the bending deflection.

Factor 12: incorrect in book (p. 95, top) (c)




By shaping the cross-section we can Area Aq
. . . S d /
increase | without changing A by Seancimament
moving material away from the

neutral axis (tubes, or I-beam), stiffer
or decrease A without changing |. % %
» shape factor ®: ratio of | for the lighter

shaped section to that for a solid
square section with the same area

) : Area A Area A = Ap/4
(maSS)' Can t gO tOO far - bUCklmg' Second momen?l = 2.5 Second moment / = [

Figure 5.8 The effect of section shape on bending
stiffness El. a square-section beam
compared with a tube of the same area (but
2.5 times stiffer) and a tube with the same

stiffness (but four times lighter).

Minimizing material cost

« For material price C_, ($/kg) the cost
of material for a component of mass
m is just mC_..

« The objective function for the Material B Mass ratio
: . Steels 64 1/8
material cost C of the tie, panel, or Aalloys 49 1/7
beam becomes C =mC,, = ALC,p Composites 36 1/6
Wood 9 1/3

« Leads to indices as before replacing
p with C_p



incorrect in book, p. 96, should be: diameter

Example

solid rod, diameter 10 mm

Example 5.4

The brass rod in Example 5.3 is formed into a hollow tube with an outer radius of

5 mm, and the same length, using the same amount of material. It is twisted with the
same torque. What is its angle of twist? Compare its torsional stiffness with the solid
rod in Example 5.3.

10 Nm



5.4 Plotting limits and indices on charts

Screening: attribute limits on charts

« Constraints can be plotted as horizontal or vertical lines; for example
on the E-relative cost chart: E > 10 GPa; Relative cost < 3.

3 Ceramics
Search : :
~—~ 100 region :
chU g 3 Metals
9) 0 L Composites
w | N \
)
= 14l Natural , Modulus
= mater/a/s\ ( E=10GPa
-O ] \ o %
g 10-11 Foams Polymers
» N\ AP
.g) | ‘
5 1072
0 \
> Relative cost = 3
1073
=—— FElastomers
_. MFA 07
104—; st R m—— ' SER— g -
0.01 0.1 1 10 100

Relative cost per unit volume

Figure 5.9 A schematic E — Relative cost chart showing a lower limit for E and an
upper one for Relative cost.



Ranking: indices on charts: selection guidelines
« Consider the design of light stiff components using the E-p chart
« Consider M = E/p = constant, C (tie-rod)
 Take logs: log E =log p + log C; a line of slope 1
« M= E"/p = constant, C (beam); log E =2log p + 2 log C;
a line of slope 2
« M=E"/p = constant C (plate); log E = 3 log p + 3 log C;
a line of slope 3
« All materials on a line perform

equally well; those above are |, [[Moduus—density ] [ e
Composites x A
better, those below are worse. _ N
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Family of parallel lines each one at a particular value of the material
index of interest, M

Mp = E1 /3/p
(GPa)'3/Mg/m?)
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Figure 5.11 A schematic E—p chart showing a grid of lines for the index E"3/p.
The units are (GPa)'3/(Mg/m3).



Computer-aided selection

 For more complex problems with multiple constraints a computer-
aided method is helpful (the CES software).
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Figure 5.12 Computer-aided selection using the CES software. The schematic shows the three types
of selection window. They can be used in any order and any combination. The selection engine
isolates the subset of materials that pass all the selection stages.



5.5 Case studies

Light levers for corkscrews (light stiff beam)

« Constraints: length, L, rectangular section, maximum deflection 9,
stiffness of S*, impact resistant

* Objective: minimize mass

* Free variables: material, area of cross section
* Loaded in bending: bending moment, M = FL
« Material index already derived M, = E"?/p;

. Length L >¢ Force F *
“& A .=='—'-*'\;::4'5
CEEYY T —
vy A
D Section, A-A

Figure 5.13 The corkscrew lever from Chapter 3. It must be adequately stiff
and, for traveling, as light as possible.



Selection line positioned to limit possibilities, some of which are too
brittle.

My = E"2/p
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Figure 5.14 Selection of materials for the lever. The objective is to make it as light as possible while
meeting a stiffness constraint.



Cost: structural materials for buildings (floor beam)

« Constraints: length, L, square section, maximum deflection 9,
stiffness of S*

« Objective: minimize cost

* Free variables: material, area of cross section

« Material index already derived for a light stiff beam; adding cost: C
=mC,, = ALpC,,

« Leading to material index M = E"2/pC_

Figure 5.15 The materials of a building are chosen to
perform three different roles. Those for the structure
are chosen to carry loads. Those for the cladding
provide protection from the environment. Those for the
interior control heat, light and sound. Here we explore
structural materials.
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Figure 5.16 The selection of materials for stiff floor beams. The objective is to make them as cheap as
possible while meeting a stiffness constraint. Concrete, stone, brick: only strong in compression.
Wood, steel: good choices, also because they can be given efficient shapes



Cushions and padding: the modulus of foams
 Cellular solids are characterized by relative density p*/p, = (t/L)?
« External stress o, then F = oL? and this force bends the cross beam
at the center giving 6 = FL3/C,E.| {= Eq. 5.5, | =14/12}
« Compressive strain: ¢ = 20/L (see picture)
* Modulus of foam: E* = o/e
« Combining everything: E*/E = (t/L)* = (p*/p,)?
¢F Cell edge

Cell edge ¢F bending

d

Vibration: avoiding resonance when changing material
« Natural frequencies are proportional to (E/p)'?
- Forold, o, and new, n, materials: Af = (Ep,/E p,)"?

»
1
| =
Figure 4.23 Manipulating the modulus —
by making a foam—a lattice of

material with cell edges that bend
when the foam is loaded. —L—

cell face




Bendy design: part-stiff, part-flexible structures

Bending

Sicing members

% surfaces Motion

Motion

Figure 5.17 A sliding mechanism replaced by
an elastic mechanism.

e
\' Elastic hinge
. /
( ( )
Pill box | Pill box ]

Figure 5.18 Elastic or ‘natural’ hinges allowing flexure with no sliding parts.



Stiff

Stiff Flexibl
(a) Flexible ' C

Stiff
<_/
Stiff
! = Stiff
(b) Flexible

Stiff g ]

Stiff

(c) Stiﬁ‘v Flexible

Figure 5.19 The flexural degrees of freedom of three alternative section shapes. (a) Thin plates
are flexible about any axis in the plane of the plate, but are otherwise stiff. (b) Ribbed plates
are flexible about one in-plane axis but not in others. (c) Cruciform beams are stiff in
bending but can be twisted easily.



