
Chapter 5
Flex, sag and wobble: stiffness-limited design

• Strength is seen to be critical, but
stiffness is often taken for granted.
E.g. London Millennium Bridge,
Tacoma Narrows Bridge

• Real loading situations can be
decomposed into the common
modes of tension, compression,
bending, and torsion.

• Here we explore standard solutions
to elastic problems, use them to
derive material limits and indices,
plot them onto material  property
charts, and finally review case
studies.

5.1 Introduction and synopsis
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I. Extension or compression

5.2 Standard solutions to elastic problems

II. Bending of beams

III. Torsion of shafts

IV. Buckling of columns and plates

V. Vibrating beams and plates



I. Elastic extension or compression

• σ = F/A; ε = σ/E; ε = δ/L0; thus the relation between load F and
deflection δ is

δ = L0F/AE

and the stiffness S (not the same as E itself) is defined as

S = F/δ = AE/L0       (Eq. 5.2)

	

 the shape of the cross-sectional area does not matter

Figure 5.1 (a) A tie with a cross-section A loaded in tension. Its stiffness is S = F/δ.



II. Elastic bending of beams

• A beam loaded by a bending moment M has its axis deformed to
curvature κ = d2u/dx2, u is the displacement parallel to the y-axis.

• Curvature generates a linear variation of strain (and stress),
tension (+) on one side, compression (–) on the other

• Beam theory: the stress profile caused by a moment M is given by

with I the second moment
of area (next page)

Figure 5.1 (b) A beam of rectangular cross-section
loaded in bending. The stress σ varies linearly from
tension to compression, changing sign at the neutral

axis, resulting in a bending moment M. R is the
radius of curvature.
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• I is the second moment of inertia: I = IZZ = ∫sectiony2b(y)dy;
(Don’t confuse moment M with moment I)

y is measured vertically from the neutral axis and b(y) is the width
of the section at y (in z-direction)
I characterizes the resistance to bending and depends on both size
and shape.

• M/κ = EI = the flexural rigidity, related to F/δ = stiffness

• The stiffness for a beam of length L with a transverse load F is

S = F/δ = C1EI/L3           (C1 in Fig. 5.3, two pages further)
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Example

 

Y

Cross-sectional views

(i.e. for bending around X axis and Y axis)

Beware: Now the Z axis is called the X axis



Figure 5.2 Cross-section area and second
moments of sections for four section shapes.

Figure 5.3 Elastic deflection of beams. The deflection δ
of a span L under a force F depends on the flexural

stiffness EI of the cross-section and the way the
force is distributed. C1 is defined in equation (5.5),

Resistance to
________________________________

bending torsion
(see later)

S = F/δ = C1EI/L3

stretching



Example



Figure 5.1 (c) A shaft of circular cross-section
loaded in torsion.

III. Torsion of shafts
• A torque, T, on an isotropic bar of uniform cross-section generates

a shear stress, τ.  For circular sections τ/r = T/K where K measures
the resistance to twisting (analogous to I, resistance to bending).

• For circular sections K = J, where J = ∫section2πr3dr; the polar second
moment of area (yet another “moment”!)  For other shapes K<J.

• The twist per unit length, θ/L obeys τ/r = T/K = Gθ/L; G is the shear
modulus; the torsional rigidity, GK = T/θ.

Figure 5.4 Elastic torsion of circular shafts. The stress
in the shaft and the twist per unit length depend

on the torque T and the torsional rigidity GK.



 

 

Example



Summary

K

Torsional rigidity GK

τ/r = T/K = Gθ/L

T (twisting torque)

Torsion

I

Flexural rigidity EI

σ/y = M/I = Ed2u/dx2

M (bending moment)

Bending

A/L0

Stiffness S = AE/L0

σ = F/A = Eδ/L0

F (force)

Stretching

Fig. 5.2

Resistance

Stress and effect

Load



Figure 5.5 The buckling load of a column of length L depends on the flexural rigidity EI
and on the end constraints; three are shown here, together with the value of n.

IV. Buckling of columns and plates
• A slender elastic column or plate can fail by buckling in

compression at a critical load, Fcrit, given by Fcrit = n2π2EI/L2

• n depends on end constraints; it is the number of half wavelengths
of the buckled shape.  Slight misalignment can reduce Fcrit.

Clamped

Free to rotate

Free to rotate and translate



Figure 5.6 The natural vibration modes of
beams clamped in different ways.

V. Vibrating beams and plates

• Any undamped system vibrating
at one of its natural frequencies
reduces to a problem of a mass m
attached to a spring of stiffness k;
the lowest natural frequency of
such a system is f =(1/2π)(k/m)1/2.

• For common geometries and
constraints f = (1/2π)(C2

2EI/L3m)1/2

and thus (because m = ALρ):

f = (C2/2π)(I/A)1/2L2(E/ρ)1/2

Power 3: incorrect in book (Eq. 5.11)



PI question

The speed of sound in a material is equal to √(E/ρ). In
which material has the speed of sound the highest value?

1. Glass
2. Copper alloys
3. Lead alloys



Exercise

How much is the speed of sound in lead alloys?



PI question

We compare the forces at which a clamped solid round rod
and a clamped tube of the same length will begin to buckle.
The rod and tube have equal outside diameters r.
For which wall thicknesses is the tube weaker than the rod?

1. For all wall thicknesses
2. For thicknesses t smaller than r/4
3. For thicknesses t greater than r/4
4. The tube is never weaker than the rod

Fcrit = n2π2EI/L2



Let’s implement the design process

• Translation

• Screening, based on constraints

• Ranking, based on objectives

• Documentation to give greater depth

5.3 Material indices for elastic design



Minimizing weight: a light, stiff
tie-rod

• Constraints: length L0, maximum
extension δ* at force F, thus
stiffness at least S* = F/δ*,
reasonable toughness

• Objective: minimize mass
• Free variables:

material, cross-sectional area A
• Objective function – equation

describing the quantity to be
maximized or minimized;
here m = AL0ρ

Figure 5.7 (a) A tie with cross-section
area A, loaded in tension. Its

stiffness is S = F/δ where F is the
load and δ is the extension.

• Constraint: S* = AE/L0

• Eliminate free variable from
objective function, here A:
m = S*L0

2(ρ/E)
• S* and L0 are specified; the

lightest tie-rod uses a material
with the smallest ρ/E

• Invert to consider maximum
values yielding material index Mt
= E/ρ – the specific stiffness



Minimizing weight: a light, stiff
tie-rod

Choose material with maximum
material index Mt = E/ρ – the
specific stiffness.

The line on the left has E/ρ = 10
GPa/(Mg/m3). Shift line
upwards for higher values.



Figure 5.7 (b) A panel loaded in bending. Its stiffness is
S  = F/δ, where F is the total load and δ is the

bending deflection.

Minimizing weight: a light, stiff panel
• Constraints: length, L, width b, maximum deflection δ, stiffness of S*
• Objective: minimize mass
• Free variables: material, thickness h
• Loaded in bending with a central load, F
• Objective function: m = Alρ = bhLρ
• Constraint: S* = C1EI/L3

• I = bh3/12
• Eliminate free variable h: m = (12S*/C1b)1/3bL2(ρ/E1/3)
• S*, L, b, C1 all specified; seek smallest ρ/E1/3 or maximize the

material index Mp = E1/3/ρ



Figure 5.7 (c) A beam of square section, loaded
in bending. Its stiffness is S = F/δ, where F
is the load and δ is the bending deflection.

Minimizing weight: a light, stiff beam
• Constraints: the shape must be self-similar (all dimensions change

in proportion as the overall size is varied, a simplification) length, L,
square section, maximum deflection δ, stiffness of S*

• Objective: minimize mass
• Free variables: material, area of cross section
• Loaded in bending with a central load, F
• Objective function: m = ALρ = b2Lρ
• Constraint: S* = C1EI/L3

• I = b4/12 = A2/12 [other shape: always a constant times A2]
• Eliminate free variable b: m = (12S*L3/C1)1/2L(ρ/E1/2)
• S*, L, C1 all specified; seek smallest ρ/E1/2 or maximize the material

index Mb = E1/2/ρ; other shapes give the same answer, only with a
different factor than 12.

Factor 12: incorrect in book (p. 95, top)



Figure 5.8 The effect of section shape on bending
stiffness EI: a square-section beam

compared with a tube of the same area (but
2.5 times stiffer) and a tube with the same

stiffness (but four times lighter).

By shaping the cross-section we can
increase I without changing A by
moving material away from the
neutral axis (tubes, or I-beam),
or decrease A without changing I.

• shape factor Φ: ratio of I for the
shaped section to that for a solid
square section with the same area
(mass).  Can’t go too far – buckling.

Minimizing material cost
• For material price Cm ($/kg) the cost

of material for a component of mass
m is just mCm.

• The objective function for the
material cost C of the tie, panel, or
beam becomes C = mCm = ALCmρ

• Leads to indices as before replacing
ρ with Cmρ

Material Φmax Mass ratio
Steels 64 1/8
Al alloys 49 1/7
Composites 36 1/6
Wood 9 1/3

stiffer

lighter



 

Example
solid rod, diameter 10 mm

10 Nm

incorrect in book, p. 96, should be: diameter



Figure 5.9 A schematic E – Relative cost chart showing a lower limit for E and an
upper one for Relative cost.

Screening: attribute limits on charts
• Constraints can be plotted as horizontal or vertical lines; for example

on the E-relative cost chart: E > 10 GPa; Relative cost < 3.

5.4 Plotting limits and indices on charts



Figure 5.10 A schematic E–ρ chart showing
guidelines for three material indices for

stiff, lightweight structures.

Ranking: indices on charts: selection guidelines
• Consider the design of light stiff components using the E-ρ chart
• Consider M = E/ρ = constant, C (tie-rod)
• Take logs: log E = log ρ + log C; a line of slope 1
• M = E1/2/ρ = constant, C (beam); log E = 2 log ρ + 2 log C;

a line of slope 2
• M = E1/3/ρ = constant C (plate); log E = 3 log ρ + 3 log C;

a line of slope 3
• All materials on a line perform

equally well; those above are
better, those below are worse.



Figure 5.11 A schematic E–ρ chart showing a grid of lines for the index E1/3/ρ.
The units are (GPa)1/3/(Mg/m3).

• Family of parallel lines each one at a particular value of the material
index of interest, M



Figure 5.12 Computer-aided selection using the CES software. The schematic shows the three types
of selection window. They can be used in any order and any combination. The selection engine

isolates the subset of materials that pass all the selection stages.

Computer-aided selection
• For more complex problems with multiple constraints a computer-

aided method is helpful (the CES software).



Figure 5.13 The corkscrew lever from Chapter 3. It must be adequately stiff
and, for traveling, as light as possible.

Light levers for corkscrews (light stiff beam)
• Constraints: length, L, rectangular section, maximum deflection δ,

stiffness of S*, impact resistant
• Objective: minimize mass
• Free variables: material, area of cross section
• Loaded in bending: bending moment, M = FL
• Material index already derived Mb = E1/2/ρ;

5.5 Case studies



Figure 5.14 Selection of materials for the lever. The objective is to make it as light as possible while
meeting a stiffness constraint.

• Selection line positioned to limit possibilities, some of which are too
brittle.



Figure 5.15 The materials of a building are chosen to
perform three different roles. Those for the structure

are chosen to carry loads. Those for the cladding
provide protection from the environment. Those for the
interior control heat, light and sound. Here we explore

structural materials.

Cost: structural materials for buildings (floor beam)
• Constraints: length, L, square section, maximum deflection δ,

stiffness of S*
• Objective: minimize cost
• Free variables: material, area of cross section
• Material index already derived for a light stiff beam; adding cost: C

= mCm = ALρCm

• Leading to material index M = E1/2/ρCm



Figure 5.16 The selection of materials for stiff floor beams. The objective is to make them as cheap as
possible while meeting a stiffness constraint. Concrete, stone, brick: only strong in compression.

Wood, steel: good choices, also because they can be given efficient shapes



Cushions and padding: the modulus of foams
• Cellular solids are characterized by relative density ρ*/ρs = (t/L)2

• External stress σ, then F = σL2 and this force bends the cross beam
at the center giving  δ = FL3/C1EsI   {= Eq. 5.5, I = t4/12}

• Compressive strain: ε = 2δ/L (see picture)
• Modulus of foam: E* = σ/ε
• Combining everything: E*/Es = (t/L)4 = (ρ*/ρs)2

Vibration: avoiding resonance when changing material
• Natural frequencies are proportional to (E/ρ)1/2

• For old, o, and new, n, materials: Δf = (Enρo/Eoρn)1/2

Figure 4.23 Manipulating the modulus
by making a foam—a lattice of

material with cell edges that bend
when the foam is loaded.



Figure 5.17 A sliding mechanism replaced by
an elastic mechanism.

Bendy design: part-stiff, part-flexible structures

Figure 5.18 Elastic or ‘natural’ hinges allowing flexure with no sliding parts.



Figure 5.19 The flexural degrees of freedom of three alternative section shapes. (a) Thin plates
are flexible about any axis in the plane of the plate, but are otherwise stiff. (b) Ribbed plates

are flexible about one in-plane axis but not in others. (c) Cruciform beams are stiff in
bending but can be twisted easily.


