
Chapter 7
Bend and crush: strength-limited design

• Stiffness-limited design avoids excessive elastic deformation.
• Strength-limited design avoids plastic collapse – generally means

avoiding yielding.  If the component is designed to remain elastic
throughout it is termed elastic design (not always required – local
yielding may be tolerable).  Sometimes we want controlled plastic
collapse (collision).

7.1 Introduction and synopsis
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Elastic design, avoiding plasticity,
ensures that the cabin of the
car does not deform in a crash.

Plasicity absorbs the energy of
impact, and allows metals to be
shaped and polymers to be
molded

Hot rolling



Figure 7.1 A beam loaded in bending.
The stress state is shown for purely

elastic loading (a), the onset of
plasticity (b), and full plasticity (c).

• Yielding of ties and columns.

The stress is uniform; if < σy the
component remains elastic, otherwise
it yields.

• Yielding of beams and panels.

A bending moment generates a linear
variation of longitudinal stress across
the section: σ/y = M/I = Eκ.

For elastic deflection we focused on
Eκ. for yielding we look at M/I.

7.2 Standard solutions to plastic problems



Figure 7.1 A beam loaded in bending.
The stress state is shown for purely

elastic loading (a), the onset of
plasticity (b), and full plasticity (c).

• σ/y = M/I, so the maximum stress
occurs at the greatest distance from the
neutral axis: σmax = Mymax/I = M/Ze
(defines Ze=I/ymax)

• Ze is the elastic section modulus.
Different from elastic modulus (E)

If σmax > σy small zones of plasticity
appear where the stress is highest.
Damage but so far not failure.

At higher moments the plastic zone
penetrates the section and the stress
profile is truncated.  At some point the
‘plastic hinge’ closes, causing failure.

7.2 Standard solutions to plastic problems



Figure 7.2 The plastic bending of beams.

• Three loading schemes with
maximum moments FL, FL/4, and
FL/8.  “Plastic hinges” form at the
red regions.

• The failure moment, Mf, is found by
integrating the moment caused by
the constant stress distribution (full
plasticity) over the section.

• Mf = ∫section b(y)yσydy = Zpσy; Zp is
the plastic section modulus.

• Two new functions of section shape
are defined for beam failure; Ze for
first yielding and Zp for full plasticity.
Zp/Ze is a measure of the safety
margin.  For a solid rectangle it is
1.5 while for tubes and I-beams it is
closer to 1.

dy in book, Eq. (7.3)



Figure 7.3 The area A, elastic section modulus Ze and fully plastic modulus Zp

 for three simple sections. In both cases the moment required is M = Zσy.

Zp = ∫section b(y)ydyZe = (1/ym) ∫section b(y)y2dy

Note: h = 2ym

First yielding Full pasticity

y



 

or: σ = M/Ze = (FL)/(wt2/6)

Example
L = 250 mm
t = 1 mm
F = 10 N
Moment M = FL

means: stress at ym

M = FL



• Yielding of shafts.  Recall τ = Tr/K = Gθr/K; K is the polar second
moment of inertia.  Failure occurs when the max surface stress > σy.

• The max shear stress τmax is at the surface: τmax = TR/K where R is
the shaft radius.  Ch. 6: The yield stress in shear, k, is half the
tensile yield stress so first yield occurs at τmax = σy/2 (or σy/3) .  The
maximum torque occurs when τ = k over the whole section.

• For a solid circular section the collapse torque is T = 2πR3k/3.

Figure 7.4 Elastic torsion of shafts. The stress in the shaft depends on the torque T and the polar
moment of area K. Helical springs are a special case of torsional loading.

Eq. 7.6, p.146, incorrectly
has r instead of R

= 2R



• When a helical spring is loaded axially the turns are loaded
torsionally.

The stiffness is given by S = F/u = Gd4/64nR3  (G = shear modulus,
n = number of turns). Elastic extension is limited by onset of
plasticity at Fcrit = πd3σy/32R.

Figure 7.4 Elastic torsion of shafts. The stress in the shaft depends on the torque T and the polar
moment of area K. Helical springs are a special case of torsional loading.



Example

 



Figure 7.5 Spinning disks, as in flywheels and gyroscopes, carry radial tensile
stress caused by centrifugal force.

• Spinning discs (flywheels).  Centrifugal forces generate a radial
tensile stress that reaches a max of σmax.

• For a Poisson’s ratio of 1/3 the kinetic energy turns out to be
U = πρtω2R4/4 and the maximum stress σmax = 0.42ρω2R2.  ρ is the
density, ω is the angular velocity.

• The disc yields when σmax = σy.

Note: “centrifugal forces” as a
result of rotation do not really
exist, centipetal force do



Example

 

 

“at the centre”?
Question
Would another material than
CFRP be better?



Figure 7.6 Contact stresses are another
form of stress concentration. When

elastic, the stresses and
displacement of the surfaces
towards each other can be

calculated.

• Contact stresses.  Yielding at contacts is closely linked to failure by
wear and fatigue.  Loaded contact points flatten elastically and the
contact area grows.  First analyzed by Hertz.

• For a sphere of radius R and modulus E pressed against a flat
surface with a load F the radius of contact in the elastic regime is:
a ≈ 0.7(FR/E)1/3 for a Poisson ration of 1/3.

• The relative displacement of the two bodies is u ≈ –(F2/E2R)1/3.
• For failure we consider the max value of the shear stress which

occurs at a depth of ≈ a/2.  τmax = F/2πa2 and a plastic zone appears
if this value exceeds the shear yield strength ≈ σy/2 (or σy/3) .



Example

 



Figure 7.7 Stress concentrations. The change of section concentrates stress
most strongly where the curvature of the surface is greatest.

• Stress concentrations.  Holes, slots, threads, and changes in section
concentrate stress locally. Yielding starts here but initially not
catastrophic (the effect on fatigue is much more threatening)

• We define the nominal stress in a component σnom as the load divided
by the smallest cross-section, ignoring stress raising features.

• The maximum local stress is given by multiplying the nominal by a
stress concentration factor Ksc: Ksc = σmax/σnom = 1 + α(c/ρsc)1/2 where
ρsc is the minimum value of the radius of curvature of the feature, c is
a characteristic dimension of the feature, and α is ≈2 for tension but ≈
½ for torsion and bending.



Example
 

 

hoop = ring, hoepel, cirkel

fuselage = romp



De Havilland Comet 1,
1951

De Havilland Comet 2,
1954



Figure 7.8 The strength–density
chart with the indices σy/ρ,
σ2/3

y/ρ and σy
1/2/ρ plotted.

• Minimizing weight: a light, strong tie-rod.  Constraint: no yielding in
tension, length L specified. Objective: minimize the mass m.  Free
variables: cross-section A, material.

• M = ALρ and F/A ≤ σy

• Eliminating A gives m ≥ FL(ρ/σy); inverting we seek materials with
largest values of Mt = σy/ρ which is the specific strength.
Ti alloys and CFRP excel.

7.3 Material indices for yield-limited design



• Minimizing weight: light, strong panels.  Constraint: no yielding in
bending, width b and span L specified. Objective: minimize the mass
m.  Free variables: thickness h, material.

• Following standard procedure Mp = σy
1/2/ρ.  Mg, Al, Ti alloys, GFRP,

wood, all outperform steel and CFRP excels.



• Light strong beams: the effect of shape.  Constraint: no yielding in
bending, span L square section specified. Objective: minimize the
mass m.  Free variables: cross-section A, material.

• Standard procedure: Mb = σy
2/3/ρ.  Holds for self similar shapes.

• We can gain strength by increasing I through shape change (tube, I-
beam) but this is material dependent.  The shape factor for strength:
φB

y = Ze
shaped/Ze

solid.

Note: Increasing stiffness
(∝I) by shaping is more
effective than increasing
strength (∝ Ze= I/ym) by
shaping. This is because
increasing I often also
increases ym.



Material Maximum failure shape factor Mass ratio by shaping
φB

y (failure moment relative to solid (relative to solid square 
beam) square beam)

Steels 13 0.18
Al alloys 10 0.22
Composites  9 0.23
Wood  3 0.48

• Minimizing material cost or volume.  C = mCm = ALCmρ leading to the
same indices as before with ρ replaced by Cmρ.

Table 7.4 The effect of shaping on strength and mass of beams in different
structural materials



• Corkscrew levers again: strength. Following standard procedure
Mp = σy

2/3/ρ. The selection is almost the same as for stiffness:
CFRP, Mg and Al alloys.

7.4 Case studies



• Elastic hinges and couplings. Consider the hinge for the lid of a box –
one piece molding, no pins, screws, etc.  A thin ligament (band) that
flexes elastically but carries no significant axial loads.  Seek a material
that bends to the tightest radius without yielding or failing.

• A ligament of thickness t bent to radius R: the surface strain is ε =
(t/2)/R. (Inside surface compressive strain is –(t/2)/R.)

• The max stress is σ = Et/2R which must not exceed σy.
• R ≥ (t/2)[E/σy]; therefore index M = σy/E
• Polymers are best (generally PE, PP, nylon)

7.4 Case studies



Figure 7.9 Materials for elastic hinges and springs. Polymers are the best choice for the
former.  High-strength steel, CFRP, and certain polymers and elastomers are the

best choice for the latter.



Figure 7.10 Springs: leaf, helical, spiral and torsion bar. Springs store energy. The best material for a
spring, regardless of its shape or the way it is loaded, is one with a large value of σ2

el/E, as we
will see



Figure 7.9 Materials for elastic hinges (polymers are the best choice ) and springs (high-
strength steel, CFRP, and certain polymers and elastomers are the best choice ).

• Materials for springs. Maximum σ must not exceed σy when the stored
energy is σy

2/2E per unit volume.  Constraint: no failure. Objectives:
max stored energy per volume. Free variables: material.

• M = σy
2/E; possibilities: high-strength steel, CFRP, titanium alloys,

nylon, elastomers.



PI question

The best (stored energy per unit volume) materials for
springs are those with maximum value of σy

2/E. Look at
line A in the diagram. Which of these statements is false?

1. Silicone elastomers and high-
strength steels are equally good

2. Materials under the line are better
than those above it

3. All materials on the line show about
equal deflection when equally loaded

A



Figure 7.11 Rolling.

• Full plasticity: metal rolling. A lower bound
for the torque and power required for
rolling is found from the plastic work, σyεpl
per unit volume required to produce a
plastic strain εpl of Δt/t0 (Δt = t0–t1).

• If rolls rotate Δθ a length RΔθ and thus
volume V = RΔθt0 per unit width is fed into
the bite where it is compressed to t1.

• Equating the work done by a pair of rolls,
2TΔθ, to the plastic work, Vσyεpl, gives the
torque per roll: T = RσyΔt/2

• The power is the torque times the angular
velocity ω radians per second:
P = 2Tω = RωσyΔt. Hot rolling takes less
power (because σy is smaller).

• These are lower bounds; friction, sliding,
and work hardening all increase the
torque and power that is needed.



Example

 


