### EE1320: Measurement Science

Lecture 5: Analog-to-Digital Convertors Dr. ir. Michiel Pertijs, Electronic Instrumentation Laboratory May 21, 2013



## Course program 2013

| date    | topic                                                                                                                                           |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------|
| Tu 23/4 | #1 intro measurements and meas. systems                                                                                                         |
| Fr 26/4 | #2 sensors                                                                                                                                      |
| Tu 7/5  | #3 sensor readout and signal conditioning                                                                                                       |
| Tu 14/5 | #4 instrumentation amplifiers                                                                                                                   |
| We 15/5 | intermediate test                                                                                                                               |
| Tu 21/5 | #5 analog-to-digital converters                                                                                                                 |
| We 29/5 | #6 measurement instruments I                                                                                                                    |
| Tu 4/6  | #7 measurement instruments II                                                                                                                   |
| We 5/6  | intermediate test                                                                                                                               |
| Tu 11/6 | tutorial                                                                                                                                        |
| We 3/7  | final exam                                                                                                                                      |
|         | date<br>Tu 23/4<br>Fr 26/4<br>Tu 7/5<br>Tu 14/5<br>We 15/5<br>Tu 21/5<br>We 29/5<br>Tu 21/5<br>We 29/5<br>Tu 4/6<br>We 5/6<br>Tu 11/6<br>We 3/7 |

Lecturer: dr. ir. Michiel Pertijs

room HB 15.050, M.A.P.Pertijs@tudelft.nl, 015-2786823



# Previous lectures... signal conditioning



- Signal conditioning needed to adjust output signal of the sensor to the input of the ADC
  - Opamp-based readout circuits, with non-idealities
  - Bridge circuits
  - Differential vs. common-mode signals
  - Difference and instrumentation amplifiers



## Today: analog-digital convertors



- Basic principles:
  - Sampling
  - Quantization
- Three important ADC types:
  - Flash ADCs
  - Dual-slope ADCs
  - Successive-approximation ADCs



## Overview study material

- Regtien 2.1.1: classification of signals, analog vs. digital
- Regtien 2.2.3: sampling, aliasing
- Regtien 18: D/A en A/D conversion
- Regtien 15.2.2: Sample-and-hold circuits



## ADC: sampling and quantization



#### analog input signal

- time continuous
- amplitude continuous

#### digital output signal

- time discrete: sampled
- amplitude discrete: quantized

6



Measurement Science (EE1320) - Lecture 5

## Sampling





**T**UDelft

#### sampled input signal

• amplitude information only at discrete points in time  $t = n \cdot T_s$ 

7

sampling frequency
 f<sub>s</sub> = 1 / T<sub>s</sub> has to be
 sufficiently high to be able
 to track changes in U<sub>i</sub>



Measurement Science (EE1320) - Lecture 5

8

# Aliasing

**T**UDelft



- 19 kHz input signal sampled with f<sub>s</sub> = 20 kHz is indistinguishable from 1 kHz signal
   ⇒ by sampling, the 19 kHz 'folds back' to 1 kHz
- This folding back is called aliasing
- In order to prevent aliasing, the sampling has to be done at a sufficiently high frequency

9

## Shannon-Nyquist Theorem

- A signal that contains no components with a frequency higher than  $f_{max}$  can be fully reconstructed based on sampling at  $f_s > 2 \cdot f_{max}$  (the Nyquist frequency)
- If  $f_s \leq 2 \cdot f_{max}$  aliasing will occur
- So: at least 2 samples per period of the highest frequency component



## Preventing aliasing

- Two ways:
  - Sample at least at the Nyquist frequency:  $f_s > 2 \cdot f_{max}$
  - Limit the bandwidth of the input signal:  $f_{max} < f_s/2$
- Anti-aliasing filter: low-pass filter suppressing signal components above f<sub>s</sub>/2





## Exercise: aliasing



• What is the minimum  $f_s$  at which aliasing is prevented?



```
U_i(t) = \sin(2\pi \cdot f \cdot t), \quad f = 1 \text{ kHz}
```



# Oefening: aliasing



• What is the minimum  $f_s$  at which aliasing is prevented?



 $U_i(t)$  = square wave f = 1kHz



## Exercise: aliasing



• What is the minimum  $f_s$  at which aliasing is prevented?



 $U_{i}(t) = \sin(2\pi \cdot f \cdot t) + 0.1 \cdot \sin(2\pi \cdot 3f \cdot t),$ f = 1 kHz



## Exercise: aliasing



• What is the minimum  $f_s$  at which aliasing is prevented?



 $U_i(t) = \sin(2\pi \cdot f \cdot t) + 0.2 \cdot \sin(2\pi \cdot 4f \cdot t),$ f = 1 kHz



## Quantization





#### quantized output signal

- sampled values are mapped onto a finite number of quantization levels
- the number of levels determines the **resolution**:

*n*-bits ADC  $\Leftrightarrow$  2<sup>*n*</sup> levels

 output D<sub>o</sub> typically binary encoded using n bits

Measurement Science (EE1320) – Lecture 5 20

## Quantization





Regtien 18.1.1

- quantization levels defined w.r.t.
  reference voltage U<sub>ref</sub>
- quantization interval (LSB step):

| $q = \frac{l}{2^r}$ | $U_{ref}$         | ~ | U <sub>ref</sub>       | (n > 1)   |
|---------------------|-------------------|---|------------------------|-----------|
|                     | 2 <sup>n</sup> –1 | = | $\frac{1}{2^n}$ (11>). | (11 >> 1) |

• 
$$D_o$$
 yields  $U_i$  as fraction of  $U_{ref}$ 

$$U_i = a_{n-1} \frac{U_{ref}}{2} + a_{n-2} \frac{U_{ref}}{4} + \ldots + a_0 \frac{U_{ref}}{2^n}$$

## Quantization errors





## Quantization errors

• ideal transfer ADC:



• maximal quantization error  $\varepsilon_q$ 

$$\left| \varepsilon_{q} \right| \leq \frac{q}{2} = \frac{U_{ref}}{2(2^{n}-1)} \cong \frac{U_{ref}}{2^{n+1}} (n \gg 1)$$

Regtien 18.1.1

• corresponds to  $\pm 0.5$  LSB



## Quantization errors

- In addition to (ideal) quantization errors, practical ADCs have more limitations:
  - offset and gain errors
  - non linearity: integral (INL), differential (DNL)
  - and sometimes: non-monotonous transfer (ambiguity) or missing codes



## Types of analog-to-digital convertors

- Direct ADCs
  - conversion takes place in one step
  - example: flash ADC
- Integrating ADCs
  - conversion trough an intermediate step: time period, frequency
  - example: dual-slope ADC
- Compensating ADCs
  - input signal is compensated (stepwise) by output signal of digital-to-analog convertor (DAC)
  - example: successive-approximation ADC (SAR ADC)





- Resistive divider with 2<sup>n</sup> resistors produces quantization levels
- Comparators compare *U<sub>i</sub>* to quantization levels
- Encoder produces *n*-bit binary code
- Fast (>1 GHz possible), but many components!
- Can be found in digital oscilloscopes for example

### Indirect ADCs

• Use an intermediate step



- Intermediate signal *x*: time step, frequency, bitstream...
- Relatively slow, but a high resolution is possible
- Often used in multimeters





$$U_{D} = \frac{1}{RC} \int_{0}^{NT_{clk}} U_{i}(t) \cdot dt = \frac{N \cdot T_{clk}}{RC} \cdot U_{i}$$

Regtien 18.2.3

**T**UDelft

Measurement Science (EE1320) – Lecture 5 28





• Number of clock periods *M* is counted until  $U_D$  returns to 0 and is a direct measure for  $U_i / U_{ref}$ :

$$D_{o} = M = \frac{U_{i}}{U_{ref}}N$$



• Number of clock periods *M* is counted until  $U_D$  returns to 0 and is a direct measure for  $U_i / U_{ref}$ :

$$D_{o} = M = \frac{U_{i}}{U_{ref}}N$$



- transfer independent of exact values of R, C
- $U_i$  is integrated  $\Rightarrow$  noise / distortion are averaged out
- integration time  $N \cdot T_{clk}$  is often a multiple of 20ms why?



32



- If the input  $U_i = 0.25 \text{ V}$ , what is the value of M?
- Which  $U_i$  result in a counter reading M = 8?
- What is the resolution of this ADC?

## Compensating ADCs



- Comparator compares U<sub>i</sub> with output of a digital-to-analog convertor (DAC)
- Feedback: result is used to adjust input DAC (through an algorithm)
- Consequence:  $U_D$  tracks  $U_i$  $\Rightarrow D_o$  tracks  $U_i / U_{ref}$
- Compensating ADCs are often found in data-acquisition systems

#### Digital-to-analog convertor

- Compensating ADCs need a DAC
  - determines resolution, linearity

Regtien 18.1.2

• Example: DAC with binary-weighed resistors



Measurement Science (EE1320) - Lecture 5 36



**T**UDelft

Regtien 18.1.3 Measurement Science (EE1320) - Lecture 5

37



**T**UDelft

Regtien 18.1.3 Measurement Science (EE1320) – Lecture 5 38



**T**UDelft

Regtien 18.1.3 Measurement Science (EE1320) - Lecture 5

39



**T**UDelft

Regtien 18.1.3 Measurement Science (EE1320) – Lecture 5

40



## Importance of a stable input signal



**T**UDelft

• When *U<sub>i</sub>* changes during the conversion, large errors can occur





## Sample-and-hold circuit





- track mode: output tracks input
- hold mode:

- input voltage is stored in  $C_h$
- opamp manages buffering
- AD conversion during hold mode
  - $\Rightarrow$  variations in  $U_i$  do not disturb conversion



## Sample-and-hold sources of error



- **Delay**: at transitions between track and hold
- **Droop**: charge leaking from  $C_h$  due to bias current ( $I_{bias}$ )
- **Settling**: limited tracking speed due to  $R_g$  and switch resistance  $R_{on}$ :  $\tau = (R_g + R_{on}) \cdot C_h$

## Summary

- ADCs convert a time- and amplitude-continuous input signal into a sampled and quantized output signal
- During sampling, the input signal is only passed at discrete time instances
  - Here, **aliasing** can occur
  - To prevent this, sampling has to be done at least at the Nyquist frequency: 2 x the highest frequency component
- Quantization maps the amplitude onto a digital code
  - Here, quantization errors occur, due to finite resolution



## Summary

- Three frequently used ADC types:
- Direct ADCs:
  - single-step conversion
  - example: flash ADC in a digital oscilloscope

#### • Integrating ADCs:

- conversion with an intermediate step (e.g. in the time domain)
- example: dual-slope ADC in a digital multi-meter

#### • Compensating ADCs:

- input signal is compensated by the output of a DAC
- example: SAR ADC in a sensor interface



#### What's next?

- Study:
  - Regtien sections 2.1.1, 2.2.3, 18, 15.2.2
- Practice:
  - See the practice exercises on Blackboard!
- Questions, things unclear? Let me know! <u>M.A.P.Pertijs@tudelft.nl</u>

## Next time: Measurement instruments

