EE1320: Measurement Science Lecture 7:

Measurement Instruments II

Dr. ir. Michiel Pertijs, Electronic Instrumentation Laboratory June 4, 2013

Course program 2013

week	date	topic
4.1	Tu 23/4	#1 intro measurements and meas. systems
	Fr 26/4	#2 sensors
4.3	Tu 7/5	#3 sensor readout and signal conditioning
4.4	Tu 14/5	#4 instrumentation amplifiers
	We 15/5	intermediate test
4.5	Tu 21/5	#5 analog-to-digital converters
4.6	We 29/5	#6 measurement instruments I
4.7	Tu 4/6	#7 measurement instruments II
	We 5/6	intermediate test
4.8	Tu 11/6	tutorial
4.11	We 3/7	final exam

Lecturer: dr. ir. Michiel Pertijs

room HB 15.050, M.A.P.Pertijs@tudelft.nl, 015-2786823

Last time... Measurement instruments

- Voltage and current measurement
 - input impedance yields gain errors (scale errors)
 - at high frequency, impedance matching is needed for signal transfer without reflections
 - several measures exist for the amplitude of AC signals
- Resistance measurement
 - 2-wire measurement results in errors due to cable resistance
 - solution: 4-wire measurement with Kelvin connections

Today: measurement instruments II

 AC waveform measurement: the oscilloscope

• Time and frequency measurements

Regtien 20.1.2

Regtien 20.1.4 **+ slides** Regtien 14.1.1, 14.1.2

The oscilloscope

Regtien 20.1.2

Operation principle of an oscilloscope

Operation principle of an oscilloscope

Regtien 20.1.2

TUDelft

Measurement Science (EE1320) – Lecture 7

Time base

Regtien 20.1.2 Measurement Science (EE1320) - Lecture 7

Triggering

TUDelft

Regtien 20.1.2Measurement Science (EE1320) – Lecture 7

Analog oscilloscope

Digital oscilloscope

Measuring without a probe

- Oscilloscope: typical $C_i = 20 \text{ pF}, R_i = 1 \text{ M}\Omega$
- Coax cable: approximately 100 pF for 1 m cable
- Input impedance: $1 M\Omega // 120 pF$

TUDelft

• Say:
$$R_g = 1 k\Omega$$
 $\Rightarrow f_{-3dB} = \frac{1}{2\pi R_g (C_c + C_i)} = 1.3 \text{ MHz}$

Measuring with a probe

10x larger

bandwidth

- Oscilloscope: typically $C_i = 20 \text{ pF}$, $R_i = 1 \text{ M}\Omega$
- Coax cable: approximately 100 pF for 1 m cable
- 1:10 probe: $R = 9 \cdot R_i = 9 \text{ M}\Omega$ frequency-independent attenuation $\Rightarrow R / R_i = (C_c + C_i) / C \Rightarrow C = 13.3 \text{ pF}$
- Input impedance: $10 M\Omega // 12 pF$ **10x** higher impedance

• Say:
$$R_g = 1 k\Omega \implies f_{-3dB} = \frac{C + C_c + C_i}{2\pi R_g C (C_c + C_i)} = 13 \text{ MHz}$$

Delft

• To make sure that $R / R_i = (C_c + C_i) / C$, C is adjusted such that a test square wave is displayed correctly

TUDelft

R_i and *C_i* differ from scope to scope
⇒ always adjust probes to the scope on which you're using them!!

Exercise

- Given:
 - scope: $R_i // C_i = 1 M\Omega // 20 \, \text{pF}$
 - cable: $C_c = 70 \, \text{pF}$
- If this is a 1:10 probe, determine *R* en *C*...

Time and frequency measurements

- Periodic signals: period duration and frequency
 - Reciprocal quantities
 - Independent of amplitude

Time measurements

- Also applied for non-periodic signals
- Example: distance measurement based on time-of-flight measurement

Removing amplitude information using a comparator

• Ideal comparator: detects zero crossings in input signal

Comparator with noise

• Noise causes uncertainty ΔT and multiple zero crossings

Comparator with hysteresis

TUDelft

• Hysteresis: two detection levels (**trigger window** ΔU)

Exercise

Measurement Science (EE1320) – Lecture 7 22

Time measurement by counting

 Counting the number of periods of a reference signal within one period of the signal to be measured

- Counter value = quantization of t_i with t_{ref} as quantization interval
- Resolution (LSB): t_{ref}

ŤUDelft

Quantization errors in time measurement by counting

• Various input signals give the same counter value

TUDelft

Simple implementation

- Crystal oscillator used as time reference
 - based on quartz
 - stable and relatively insensitive to temperature
- Maximum measurement time

 $t_{i,max} = c_{max} / f_{ref}$

• Resolution
$$\Delta t = 1 / f_{ref}$$

Simple implementation

- Example: $f_{ref} = 10 \text{ MHz}, c_{max} = 10^8$ $\Rightarrow t_{i,max} = 10 \text{ s}$ $\Delta t = 0.1 \text{ }\mu\text{ s}$
- Larger relative errors at shorter measurement times!

• Example: $t_i = 10 \,\mu s \Rightarrow \varepsilon_{rel} = 1\%$

Implementation with period averaging Measurement of 10ⁿ periods Tref crystal \Rightarrow measurement СК overflow oscillator ΕN COUNTER $t_m = 10^n \cdot t_i$ time tm resolution $\Delta t = \frac{1}{10^n \cdot f_{res}}$ LSB MSB DIVIDER ÷10'' **MULTIPLEXER** • Example: $t_i = 10 \,\mu s$ comp 8 x digit-to $f_{ref} = 10 \text{ MHz}, c_{max} = 10^8$ U_i(t) 7-segment converter $n = 0 \implies \Delta t = 0.1 \ \mu s$ 4'0 2 4'5 0 6.0 🖷 $\Rightarrow \varepsilon = 1\%$ $n = 4 \implies \Delta t = 10 \text{ ps}$ $\Rightarrow \varepsilon = 1 \text{ ppm}$

TUDelft

Example period averaging

Measurement Science (EE1320) - Lecture 7 30

Exercise time measurement

- Given: 1 MHz crystal oscillator maximal counter reading: 999 999
- What is the resolution of the time measurement?
- What is the maximum measurement time?
- When employing period averaging, which division factor (10ⁿ) makes optimal use of the resolution when measuring a 2 kHz signal?

Frequency measurement by counting

 Counting the number of periods of the signal to be measured, within one period of the reference signal

Simple implementation

Implementation with frequency division

TUDelft

- Reference is divided by 10^m
- Measurement time $t_m = 10^m / f_{ref}$

• Resolution
$$\Delta f = f_{ref} / 10^{m}$$

• Example: $f_{ref} = 10 \text{ MHz}, \text{ m} = 8$ $\Rightarrow t_m = 10 \text{ s}$ $\Delta f = 0.1 \text{ Hz}$

Measurement Science (EE1320) – Lecture 7 35

Example frequency division

Summary

- Oscilloscope: qualitative display of signal waveform
 - basic principles: time base, triggering
 - well-adjusted probes enlarge input impedance and bandwidth
- Comparator used in time and frequency measurement to remove amplitude information
 - hysteresis to avoid false detections due to noise
- Time measurement: counting the number of periods of a reference signal within one period of the input signal
 - period averaging to increase resolution (at short periods)
- Frequency measurement: counting the number of periods of the input signal within one period of a reference signal
 - division of reference signal to increase resolution (at low frequencies)

What's next?

• Study:

• Regtien sections 14.1.1, 14.1.2, 20.1.2, 20.1.4 + slides

- Practice:
 - See Blackboard for exercises!
- Questions, things unclear? Let me know! <u>M.A.P.Pertijs@tudelft.nl</u>

Next time: tutorial

