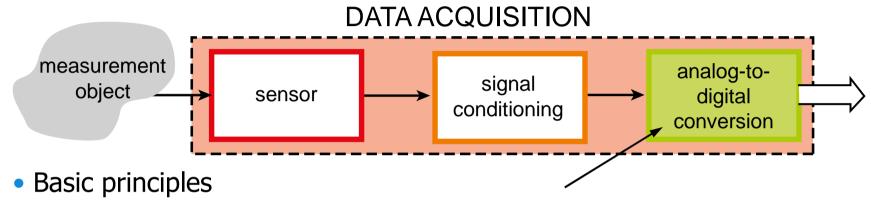
EE1320: Measurement Science

Lecture 6:

Measurement Instruments I

Dr. ir. Michiel Pertijs, Electronic Instrumentation Laboratory

May 29, 2013


Course program 2013

week	date	topic
4.1	Tu 23/4	#1 intro measurements and meas. systems
	Fr 26/4	#2 sensors
4.3	Tu 7/5	#3 sensor readout and signal conditioning
4.4	Tu 14/5	#4 instrumentation amplifiers
	We 15/5	intermediate test
4.5	Tu 21/5	#5 analog-to-digital converters
4.6	We 29/5	#6 measurement instruments I
4.7	Tu 4/6	#7 measurement instruments II
	We 5/6	intermediate test
4.8	Tu 11/6	tutorial
4.11	We 3/7	final exam
Lecturer: dr. ir. Michiel Pertijs		

room HB 15.050, M.A.P.Pertijs@tudelft.nl, 015-2786823

Last time... analog-to-digital convertors

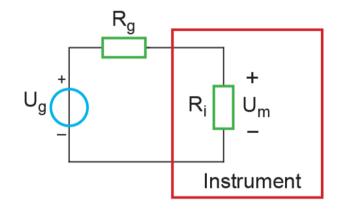
- Sampling
- Quantization
- Three important ADC types:
 - Flash ADCs
 - Dual-slope ADCs
 - Successive-approximation ADCs

Today: measurement instruments

- Measurement instruments
 - voltage measurement
 - current measurement
 - resistance measurement

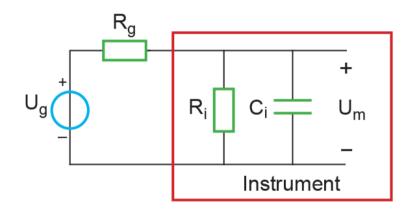
Overview study material

- Regtien 20.1.1: multimeters
- Regtien 5.1.3: loading errors and impedance matching
- Four-wire resistance measurement (slides)
- Regtien 2.1.2: amplitude measures (peak, rms, etc.)


Multimeters

Voltage measurement

Practical voltage meters impose a load on the source

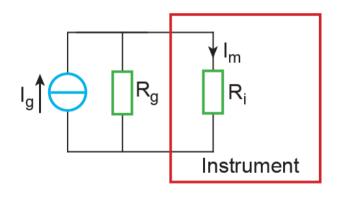

$$U_m = \frac{R_i}{R_g + R_i} U_g = \left(1 - \frac{R_g}{R_g + R_i}\right) \cdot U_g$$

gain error / tracking error

• For a small gain error: $R_i >> R_g$ (voltage matching)

Voltage measurement

At higher frequencies, the capacitive load also comes into play

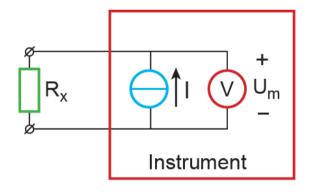

$$U_{m} = \frac{Z_{i}}{R_{g} + Z_{i}} U_{g} = \left(1 - \frac{R_{g}}{R_{g} + Z_{i}}\right) \cdot U_{g}$$

frequency dependent gain error

- Input impedance: $Z_i = R_i // C_i = R_i \frac{1}{1 + j\omega R_i C_i}$
- ⇒ Larger gain errors at higher frequencies

Current measurement

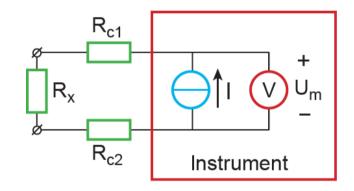
Current meters also impose a load on the source


$$I_m = \frac{R_g}{R_g + R_i} I_g = \left(1 - \frac{R_i}{R_g + R_i}\right) \cdot I_g$$

gain error / tracking error

- For a small gain error: $R_i \ll R_g$ (current matching)
- Inductive load leads to gain errors that increase with frequency

Resistance measurement


 Basic principle: send a current through the resistor and measure the voltage drop

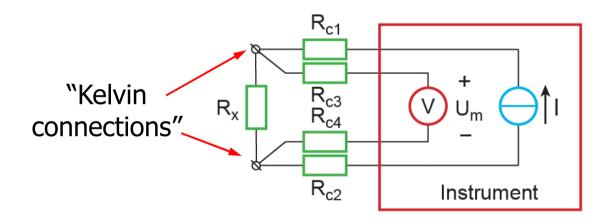
$$R_m = \frac{U_m}{I} = R_x$$

Resistance measurement

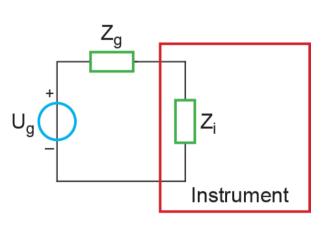
Wiring induces an offset error

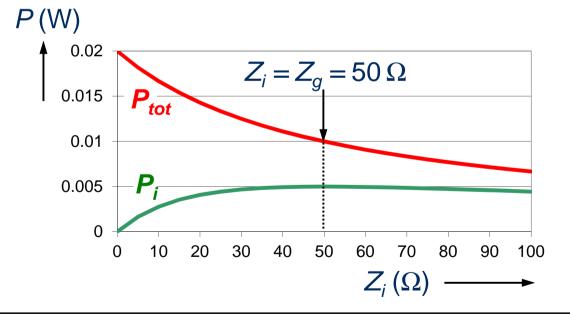
$$R_m = \frac{U_m}{I} = R_x + R_{c1} + R_{c2}$$

offset error due to series resistances


How can you solve this???

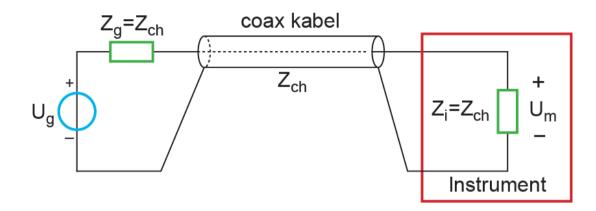
Four-wire measurement

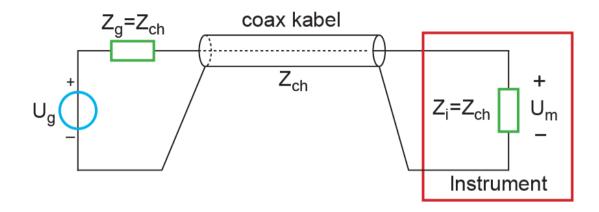

- Four-wire measurement prevents errors due to series resistances:
 - voltage drop across R_{c1} en R_{c2} is not measured
 - voltage drop across R_{c3} en R_{c4} is zero (no current)


$$R_m = \frac{U_m}{I} = R_x$$

Impedance matching

- Non-energetic matching: no load imposed on source
 - voltage measurement with Z_i >> Z_g
 - current measurement where $Z_i << Z_g$
- **Energetic** matching / impedance matching: power transfer is maximized: $Z_i = Z_g$

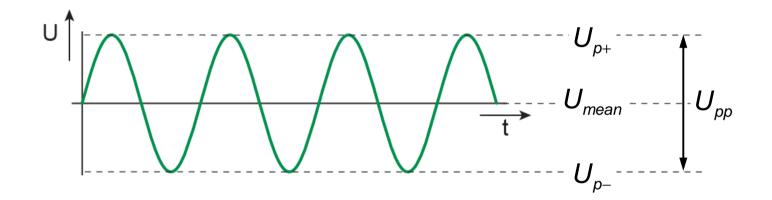




Impedance matching

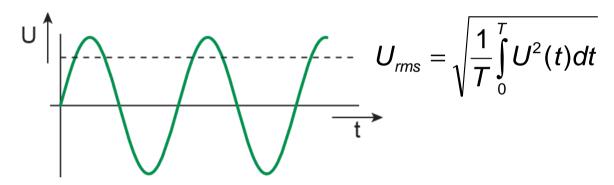
- Especially important at high frequencies, when the wavelength is comparable to the cable length
- Cable acts as a transmission line
- Impedance matching is needed to prevent reflections

Characteristic impedance

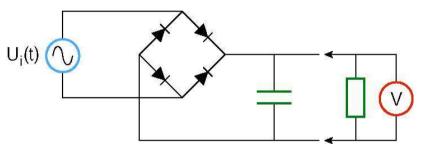


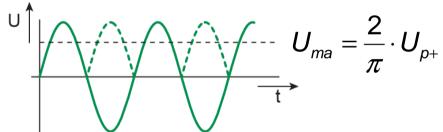
- Impedance matching: source impedance = input impedance = characteristic impedance of the cable
- Characteristic impedance is determined by cable geometry: often $\mathbf{50}\Omega$ for coax measuring cables
- Ideal lossless cable $\Rightarrow U_m = U_g / 2$

Amplitude measurement of periodic signals


Average value, peak value, peak-to-peak value

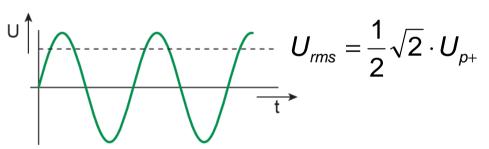
Amplitude measurement of periodic signals


• Root-mean-square (rms) value

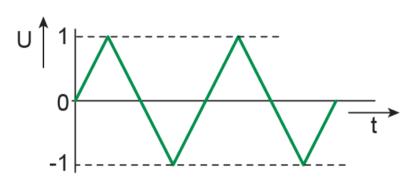


- Measure for the signal power:
 U(t) dissipates the same average power in a resistor as a DC voltage of U_{rms}
- Crest factor: $CF = \frac{U_{p+}}{U_{rms}}$ Sine? $CF = \sqrt{2}$

AC measurement with a rectifier


• Some instruments estimate the rms value U_{rms} based on the average of the modulus U_{ma} and a correction factor

correction factor for a sine:


$$U_{rms} = \frac{\pi}{2\sqrt{2}} \cdot U_{ma} \cong 1.11 \cdot U_{ma}$$

Correction factor is strongly dependent on the waveform!

Exercise: triangular waveform

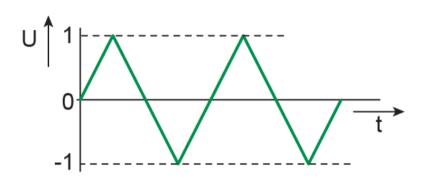
$$U_{p+} = 1$$

$$U_{pp}=2$$

$$U_{rms} = \frac{1}{3}\sqrt{3}$$

$$U_{ma}=\frac{1}{2}$$

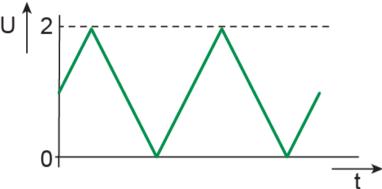
$$U_{p+} =$$


$$U_{pp} =$$

$$U_{rms} =$$

$$U_{ma} =$$

Exercise: triangular waveform



$$U_{p+} = 1$$

$$U_{pp}=2$$

$$U_{rms} = \frac{1}{3}\sqrt{3}$$

$$U_{ma}=\frac{1}{2}$$

$$U_{p+} = 2$$

$$U_{pp} = 2$$

$$U_{rms} = \sqrt{1^2 + \left(\frac{1}{3}\sqrt{3}\right)^2} = \sqrt{1 + \frac{1}{3}} = \frac{2}{\sqrt{3}}$$

$$U_{ma} = U_{mean} = 1$$

Summary

- Voltage and current measurement
 - input impedance yields gain errors (scale errors)
 - at high frequency, impedance matching is needed for signal transfer without reflections
 - several measures exist for the amplitude of AC signals
- Resistance measurement
 - 2-wire measurement results in errors due to cable resistance
 - solution: 4-wire measurement with Kelvin connections

What's next?

- Study:
 - Regtien sections 2.1.2, 5.1.3, 20.1.1, slides
- Practice:
 - See Blackboard for exercises!
- Questions, things unclear? Let me know!
 M.A.P.Pertijs@tudelft.nl

Next time: Measurement instruments II

