
Exercises Mesoscopic physics 
Exercises indicated with an * are more challenging and require a background in mathematics 
and quantum mechanics at the level of the bachelor applied physics.  

Lecture 1: Introduction, Level Spacing and Density of States 
 
1a When was the field of mesoscopic physics born? (which decade) 
  b Which development made the field possible? 
 
2a Which fundamental equation is used to calculate the level spacing? 
  b What are the eigenvalues of an one-dimensional harmonic oscillator with  

V(x) =½mω2x2? 
  c Calculate the density of states for a small frequency ω. 
  d Compare the energy dependence of the d.o.s. with that of a particle in an one-

dimensional box. 
  e What would you take as the size L of the system when it is filled with 1000 non-

interacting electrons? 
 
3a Calculate the Fermi wavenumber kF for a two dimensional electron gas (2DEG), 

expressed in the electron concentration n. Do the same for 1D.  
 The units in which the electron “concentration” is expressed changes with the 

dimensionality of the system. To compare systems with different dimensionalities, the 
concentration can be expressed in the effective distance between electrons de-e by 
assuming that each electron lives in a box of size de-e. 

b Express the results for kF in one, two and three dimensions in de-e and calculate the 
numerical value of the prefactors. Are you surprised that they are close to one? 

 
4 Graphene is recently discovered material, consisting of an 

one carbon atom thick layer. The atoms are positioned in a 
hexagonal lattice with a distance dCC = 1.4 Å between the 
atoms. 

  a Each carbon atom has one free electron. Find the value for 
the Fermi energy and Fermi wavelength using the free 
electron model. 

  b The band structure can also be calculated with a tight-binding model. Look up what 
the band structure E(k) is in this case. What is the effective mass? 

  c* Find the density of states from the band structure. Compare the result to the results for 
a free electron gas. 

 
5a Argue in which case the infinite square well describes reality the best: a metallic or a 

semiconducting material.   
  b  Calculate the level spacing for a cubic gold cluster with size 1×1×1 and 10×10×10 nm3 

and compare this with its charging energy. 
  c Calculate the values for EF (in eV), kF  (in nm-1) and D(EF) (in eV-1) in both cases. 

Look up the values that you need.  
  d* Find the level spacing and density of states for a spherical gold cluster with radius R. 

See p129 of introductuction to quantum mechanics by Griffiths and use a computer to 
find the roots. Compare the results to the cubic case. Does the exact shape of the 
system matter when calculating the density of states? 



Lecture 2: Length scales, transport regimes and classical 
conduction 
 
1a Why is the Fermi wavelength much larger in a semiconductor compared to a metal? 
b Semiconductors are often described in terms of the carrier concentration n and 

mobility µ. They are related to the conductivity by: σ = neµ. Express the elastic mean 
free path in terms of µ and n for 1,2 and 3 dimensions. 

  c What is the mean free path of a 2DEG with n = 4·1015 m-2 and µ =105 cm2/Vs? 
  d  Calculate the cyclotron radius when a perpendicular magnetic field B=1 T is applied to 

a GaAs 2DEG.  
 
2 The phase coherence time τφ indicates how long an electron can remember its phase. 

How far does an electron get in this time? Consider the case with and without elastic 
scatterers in the material. Which relation separates the two cases? 

 
3 A diffusive bar with width W = 0.13 µm is placed in a perpendicular magnetic field 

and the resistance is measured.  
  a The magnetic field is small. What happens with the resistance of the sample when the
 magnetic field is increased? 
  b For which magnetic field is the cyclotron radius equal to the width of the bar? 
  c What happens with an electron when the magnetic field is much higher that the field
 calculated in (b) ? 
d Sketch the resistance versus magnetic field and compare this with the measurement by 

Thornton et al (Phys. Rev. Lett. 63, 2128, 1989) 
 

Lecture 3: Phase coherent transport 1 
 
1a What is weak localization? 
b Sketch the resistance of a device in which weak localization (WL) occurs versus the 

magnetic field. Which parameter can be extracted from such a measurement? 
c  We make channels in a 2DEG with an elastic mean free path of 1 µm and a phase 

coherence length of 100 nm. For which channel L lengths can we observe WL: 
 L = 1 cm, L = 10 µm, L = 300 nm L = 30 nm? 
 
2 Suppose that we can make elastic 

scatterers with great accuracy, 
and we place them in a 2DEG in 
a square lattice. Electrons come 
in from one direction and when 
they hit a scatterer they either 
turn 90o or just continue their 
way. The spacing between the 
scatterers is of the same order as 
lφ. Sketch the magneto-resistance 
curve.  

e- 



Lecture 4: Phase coherent transport 2 
 
1a Express the flux quantum in fundamental constants. How large is it? 
b What is the periodicity (in Tesla) of AB oscillations in a ring with a diameter of 1.0 

µm and a multi-walled carbon nanotube with a diameter of 20 nm? Can AB 
oscillations be observed in a 2 nm single walled nanotube when using 12 T 
superconducting magnet? 

  c When you measure the magneto-resistance of an Aharonov-Bohm ring, you observe 
 oscillations with both one and one-half of a flux quantum. What are the origins of 
 both oscillations? 
 
2a A metallic ring has a diameter of 0.5 µm, a thickness of 10 nm and a width of 20 nm. 

What are the periodicities of the AB effect when electrons travel along the outer and 
inner edge? Where is the AB effect (∆R) larger, at small or large magnetic fields? 

  b* After performing a magneto-resistance measurement, the Fourier transformation of the 
data is used to find the periodicity. What happens with the h/e peak when only a finite 
range of magnetic field is measured? 

  c The two arms in the ring are almost, 
but not exactly the same. With which 
length scale do you have to compare 
the difference: Le, Lφ or λF?  

  d  You measure the magneto-resistance 
(see figure). The minimum in 
resistance does not lie at zero magnetic 
field. Can you explain this? 

  e With AAS oscillations, can you have a 
minimum, a maximum or any value in 
between at zero magnetic field? 

 
3a What is universal about UCF? 
  b UCF is measured in a rectangular bar with length L, width W and thickness H. Express 

the square resistance R□ in the resistivity and dimensions of the device. 
  c Show that the resistance of the bar can be obtained by “counting squares”. 
  d A samples with a resistance of 100 Ω shows UCF. How large are the fluctuation in the 

resistance, both in Ω and as a percentage. 



Lecture 5: Ballistic transport 
 
1a What is the order of the length-scales for classical ballistic transport: L, λF, le and lφ?  
b How does the resistance of a channel change when the length is increased for a quasi- 

and true ballistic channel? 
c A ballistic nanotube is measured in a four-terminal geometry. What is larger, the two-

terminal or the four-terminal resistance and what causes the difference. 
d  First the two-terminal resistance is measured. What values for the four point-

measurements can you expect? 
The experiment has indeed been done. You can find the answers to this exercise in B. Gao 
et al, Phys. Rev. Lett. 95, 196802 (2005) 
 

2a Express the chemical potential of the left 
reservoir (µL) of the Hall bar shown on the 
right in terms of the voltage drop between 
the left and right lead and µR. 

  b  A perpendicular magnetic field is applied to 
the ballistic Hall bar. Sketch the trajectories 
of electrons when the cyclotron radius is much smaller than the width of the bar. What 
are the chemical potentials µ1 and µ2 and the Hall resistance VH/I in this case? 

  c Sketch the electron trajectories for lower magnetic fields. What happens with the Hall 
resistance when the field is decreased? Is it possible that the Hall resistance becomes 
negative (when B > 0)?  

 
3 A one dimensional conductor contains a 

single scatterer with transmission t and an 
electron with wavefunction ψ(x) = exp(ikx) 
is sent into the wire.   

 a The probability current J determines how 
fast the probability of finding the electron in 
the right reservoir changes and is given by†: 

    
Express the probability current in terms of t and the velocity of the electron. 

  b What is the density of states of a one dimensional conductor? How many electrons 
flow in the channel from the left reservoir when a small voltage V is applied between 
the left and right reservoir? 

  c Calculate the current through the wire. Does it depend on the electron velocity?  
  d When the width of the wire is larger than λF, more than one conduction channel is 

open. For each channel, the transmission can be different. Show that the conductance 
of the wire is given by: 

 
  e* Assume that the scatterer is a rectangular potential of height V0>EF and size d. 

Calculate the (energy-dependent) transmission coefficient t(E) and the make a plot of 
the voltage dependence of the differential conductance. 

                                                
† See for example p13 of introductuction to quantum mechanics by Griffiths 
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4a The measured current through a point contact 
with two available channels with a voltage V = 
20 µV is applied is shown. What is conductance 
in Siemens and in units of G0? 

  b The noise is also measured and a value of SI = 
2.0 ·10-28 A2/Hz is found. The noise is related to 
the transmission of the channels Tn by: 

 
What are the transmissions T1 and T2 of the two channels? 

  c* What is the bandwidth of the current meter that was used? How large is the thermal 
(Johnson) noise in pA of this point contact at a temperature of 4 K? 

d The shot noise in a resistor is SI = 2eI. Is the noise in a quantum point-contact larger or 
smaller than this value? 

   
5* Electrons in a high magnetic field form 

Landau levels. In this exercise it will be shown 
that this can be described quantum 
mechanically as a harmonic oscillator. 

  a What is the Hamiltonian for an electron in a 
uniform magnetic field? Expand the squared 
term. Pay attention to the order of the gradient 
and vector potential A.  

  b The B field is applied in the z-direction, perpendicular to the 2DEG. What is the 
general form of the vector potential? Note that that there is a gauge freedom.  

  c The electron lives in a 2DEG, where the (scalar) potential only depends on the 
direction perpendicular to it V(x,y,z) = V(z). Show that with the gauge choice 

 
the Hamiltonian can be separated in H = Hxy(x,y) + Hz(z), so Schrödinger equation can 
be solved by inserting Ψ(x,y,z) = ψ(x,y)χ(z). We assume that the first excited state of 
Hz is far above EF. 

d Show that ψ(x,y) = u(y)eikx represents an electron moving in the x-direction. Show that 
the Schrödinger equation for u(y) is: 

 
e Show with a change of coordinates y→ η this can be written as the Schrödinger of an 

harmonic oscillator: 

 
What is the frequency ω expressed in B? Calculate the level spacing in eV for m* = 
0.07·me, B = 1 T and k = 0.16 nm-1. How does it compare to the Zeeman energy? 

f In the absence of a magnetic field, the electron average y position of the electron is the 
middle of the 2DEG. Show that when Landau levels are formed, the electron is closer 
to one of the edges of the 2DEG.  

  

exp(ikx) B 



6 In the lectures we have encountered the 
Hall effect three times as: 
• The classical diffusive Hall effect, 
• The classical ballistic Hall effect, 
• The (integer) quantum Hall effect. 
What are the differences and similarities 
in these different effects? Hint: what is 
measured, what are the relevant length 
scales and make sketches of electron paths. 
 

7a The resistance RXX of the two dimensional bar shown in the figure is measured. 
Express the resistance RXX in the resistance of a square R□ and the dimensions of the 
bar. How does the resistance depend on the length L? 

  b  In the classical diffusive limit, what is the force F on an electron in an electric and 
magnetic field? How are the average velocity of the electrons and the current density 
related? 

  c Now the Hall voltage VY is measured and divided by the applied current IX to obtain 
the Hall resistance RXY. Can a net current flow in the y direction? Use the answer to b 
to express the RXY in the 2D electron concentration. 

 
8a  We now turn to the integer quantum Hall effect. What is the spacing in energy 

between two adjacent Landau levels and calculate the value in eV for a field of 1 T? 
Sketch the density of states for B = 0 and for high magnetic fields. 

  b The number of electrons in a 2DEG that is not connected to leads, does not change 
when the magnetic field is switched on. How many electrons are there in a single 
Landau level? Is the Landau level just below the Fermi energy completely filled? 
Sketch the magnetic field dependence of the Fermi energy.  

  c When the 2DEG is connected to the leads, electrons are inserted due to the difference 
in chemical potential between the metal and the 2DEG. The chemical potential of the 
leads does not change, so how many electrons are in the highest occupied Landau 
level? 

  d  Use the number of filled Landau levels to calculate the 2D electron concentration and 
insert this into the answer to 6c. Is the result what you expect? Was the derivation 
done correctly or have we been cheating? 

 
9a The extent of the wavefunctions in a 

harmonic oscillator are related to the zero 
point uncertainty: 

  
 Its value for a Landau level is called the 

magnetic length. Express it in terms of 
fundamental constants and the strength of 
the magnetic field. 

  b The width of one the voltage probe leads is small: WV = 50 nm. Calculate the magnetic 
field dependence of the Hall resistance for EF = 5 eV and m* = me. Does the answer 
depend on the value of Vx? 
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Single electron tunneling and Coulomb blockade 
 
1a What is the relevant energy-scale for Coulomb blockade?  
b How large is the capacitance (to infinity) of a sphere with radius r = 1 nm. Compare 

this to kBT at room temperature and at T = 50 mK. 
 

2a An amount of charge Q0 is placed on a capacitor with 
capacitance C. There is a resistance R to ground. What is 
the time-dependent charge Q(t) on the capacitor? 

 What is the characteristic time-scale for this problem?  
  b The Heisenberg uncertainty principle states that the 

energy of an electron is ill defined when the electron 
stays in a state only for a short time:  

 
What is the uncertainty in energy for the system discussed in a? 

c This uncertainty has to be compared with the charging 
energy EC = e2/2C. In which case can Coulomb 
blockade be observed: δE >> EC or δE << EC? 

d Which relation should hold for the resistance to 
observe Coulomb blockade? Do you recognize this 
value? Does it depend on the capacitance?  

e The network is connected to a voltage source and a 
current meter. Draw the IV characteristics for R = 1 
kΩ and R = 100 kΩ. 

 
3a The stability diagram shown on the right is measured 

on a small gold grain. (K.I. Bolotin et al., APL 84, 
2004, 3154). What is the charging energy and the 
total capacitance of the grain? 

  b Use the slopes of the diamonds to find the gate 
coupling Cg/Ctot. What are the gate, source and drain 
capacitances? 

  c At Vg = -0.5 V a switch occurs. How much is the 
change in the induced (offset) charge? Is this an 
integer multiple of e? 

  d Suppose that the switch is due to the charging of 
another island nearby by a single electron. What is the 
capacitance between the two islands?   

 
 
4a* A metallic sphere with radius R is placed at the origin. An electron is placed at r=a>R. 

Use the method of image charges to calculate its potential energy. Sketch the charge 
distribution on the sphere. Calculate the difference in energy for the electron located at 
r = ∞ and when the electron is located on the sphere. Is the difference positive of 
negative? 

  b What is the electrostatic potential of the sphere? Calculate its capacitance. 
  c Repeat 3a for the situation where an electron is already on the sphere.  
  d Repeat 3a for the situation where the sphere is grounded.  

C R 

C R 

A V 



5a What is the total energy of N electrons on a large metallic island? Take both the 
charging energy and gate potential into account. 

  b Now the size of the island is made much smaller and the level-spacing becomes 
important. What is the total energy U(N) in this case? 

  c What does the word “chemical potential” mean? How is it defined when only a small 
number of electrons is in the system? 

  d Calculate the chemical potential for the total energy in a and b. Is it the same for each 
electron? 

  e Calculate the gate voltages of the charge degeneracy points. 
 
6a    Electrons that tunnel to a quantum dot have to pay the charging energy and the 

charging energy and the level spacing, which results in diamonds in the stability 
diagram. The stability diagram 
shown below is measured here 
in Delft in a carbon nanotube 
quantum dot  (Sapmaz et al. 
Phys. Rev. B 71, 153402, 2005). 
Find the addition energies for 
each of the four different 
diamonds. 

  b There are many more lines visible in this stability diagram than one would expect for a 
simple quantum dot. Lines running parallel to the diamond edges can be used to find 
values for the energy difference between the ground state and excited states in a given 
charge state. Use a sketch of an energy diagram of the leads and the dot to explain how 
this works.  

  c  The band structure in a metallic nanotube is linear and given by E(k) = vFhk/2π. 
Calculate the levelspacing for a nanotube with length L = 350 nm. Which lines would 
correspond to this energy? 

  d  When the effect of interactions between the electrons is on the dot neglected, each 
level has a four fold degeneracy (2x due to spin, 2x due to clockwise/anticlockwise). 
Find the charging energy of this nanotube from the sizes of the diamonds. 

  e What is the gate capacitance of the tube? Calculate the length of the tube using the 
equation for the gate capacitance in the slides. Is this in agreement with the length 
found from the levelspacing? 

  



Nanomechanics 
 
1a What is the difference 

between stress and strain? 
Explain what the Young’s 
modulus and Poisson’s ratio 
are. What is tension and what 
is bending rigidity? 

  b  A bar with original dimension LxWxH is subject to a force F as shown on the right. 
The Young’s modulus is E and the Poisson ratio ν. What are the dimensions of the 
beam after the force has been applied? 

  c When sound travels through the bar, slices will alternating be compressed or extended, 
both in space and time, resulting in travelling waves. The density of the beam is ρ. 
Find the (longitudinal) speed of sound of the bar. Does it depend on the dimensions? 

  d Different material have different mechanical properties. Look up the values to fill in 
this table with properties of materials often used for NEMS. 

 
Material E (GPa) ν (-) ρ (kg/m3) vL (m/s) 
Silicon     
Silicon Nitride     
Silicon Carbide     
Diamond     
Graphite (in-plane)     
IndiumPhosphide     

 
  e Look up the crystal structure of graphite. Are its mechanical properties the same in all 

directions? When comparing the mechanical properties of carbon nanotubes with those 
of graphite, would you take the in-plane or out-of plane properties of graphite? 

 
2a Bending modes of a beam are described by the Euler-Bernoulli equation: 

 
How does the bending rigidity D depend on the width W, height H and length L of a 
rectangular beam? 

b Euler-Bernoulli equation looks similar to that of a simple harmonic oscillator, but now 
 there is an x-dependence of the displacement u. Sketch the shape of the first three 
eigenmodes of doubly and singly clamped beams. Which one has the first mode with 
the highest frequency? 

c Plug a function u(x,t)=T(t)X(x) in this equation and move all terms that depend on t to 
the left. Put all terms that depend on x right of the equal sign. Show that both sides is a 
constant λ, i.e. they are independent of x and t. Write down the two resulting 
equations. 

d Solve the equation for T(t) and show with λ = -ω2 the equation of a simple harmonic 
oscillator is obtained. 

e  Show that X(x) = a cos(kx) + b sin (kx) + c cosh(kx) + d sinh(kx) with -k4 = λ is the 
(general*) solution to the equation for the spatial dependence. 

f*  Solve the equation for X(x) for a singly (X(0)=X’(0)= X’’(L)=X’’’(L)=0 ) and a doubly 
(X(0)=X’(0)= X(L)=X’(L)=0)  clamped beam to obtain an expression that k should 
satisfy. Solve the first 3 roots of this equation numerically and plot X(x). Compare the 
outcome with the answer to b. 

F F 



3a One of the important problems with NEMS is that not only the devices are small, but 
that the displacements are even smaller. Calculate the frequency of the first bending 
mode for a 200 nm long suspended carbon nanotube (take r = 0.7 nm, E = 1 TPa, ρ = 
1.3·103 kg/m3 and I = πr4). Below which temperature is the resonator in it’s 
groundstate? 

  b The mass appearing in the relation for the eigenfrequency is not equal to the total mass 
m of the nanotube: 

   
where meff = 0.735⋅m. Why is the effective mass lower than the total mass? Find the 
springconstant of the nanotube. What is the thermal noise amplitude of the nanotube at 
room temperature and at 18 mK? How large is the zero-point motion of the resonator? 

  c These very small displacements 
can only be observed with 
special detection mechanisms. A 
single electron tunnelling device 
(SET) is placed 200 nm from the 
nanotubes and a voltage Vnt is 
applied to the nanotube. Use the 
expression for the capacitance 
between a nanotube and a plate 
to estimate the capacitance that 
couples the nanotube and the 
SET. Expand the answer for 
small displacements u.  

  d Sketch the gate dependence I(Vg) 
of the SET for a small bias Vb. What happens with the current when the nanotube is 
moving? Indicate in the sketch at which gate voltage the SET is most sensitive to 
changes in the tube’s position. What happens with the sensitivity when Vnt is 
increased? 

  e First no voltage is applied 
to the nanotube and the SET 
is characterized. Some of 
the measurements are 
shown on the right. 
Furthermore, it is found that 
the source and drain 
capacitances can be 
neglected. Now the 
coupling between the resonator and the SET is switched on by applying Vnt = 4 V. Can 
the zero-point motion be detected with this detection scheme? 
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4a A rectangular bar with 
dimension LxWxH is 
connected to two large 
anchoring points which have 
different temperatures TL 
and TR. This will result in a 
net heat current flowing through the bar. The bar is made from silicon nitride, which is 
an isotropic and insulating material. Which contribution will be dominant, electron or 
phonon heat conduction‡? 

  b Phonons displace the volume elements of the beam from their initial position. How 
many phonon types does the beam have? The displacement field u(x,y,z,t) with 
components ui is governed by a wave equation: 

 
Here, ρ is the density and E is the elasticity tensor. Look up which of the elements of 
the elasticity tensor are zero for an isotropic material and express the other elements in 
terms of the Young’s modulus and Poison ratio. Show that 

 
is a solution to this equation. Which way is the does the wave travel for positive 
frequency and wavevector? Given the number of  

c What are the boundary conditions at the sides (not the anchoring points) for the 
displacement? Show that this leads to the formation of subbands, just as in the case for 
ballistic electrons. Give an estimation for the energy at which the second (n=2) 
subband begins, without actually solving χ completely. 

  d* Show that the energy flow carried by a phonon is given by: 

 
e Insert the solutions for u. What is the occupation of a phonon-mode with angular 

frequency ω travelling to the right? Is this the same for left-moving phonons. Compare 
this situation with that of electrons.  

  f Now show that the net heat current is given by the Landau-Buttiker expression: 

  
Show that the thermal conductance K due to the n=1 subband of one type of phonons 
for a small temperature difference is given by§: 

 
 and calculate the value of the universal thermal conductance quantum κQ. 
  g When the temperature is increased, more than one subband of each type can 

contribute. For electrons higher subbands lead to a stepwise increase in the 
conductance. Is this the also the case for phonons? 

 

                                                
‡ This exercise is based on the discussion in M. Blencowe, Phys. Rep., 395, 2004 
§ Use the identity:  

 

TL TR 



5a A molecule is connected to two electrodes and a bias 
voltage is applied, which results in an electric field. 
The bonds between the molecule and the contacts are 
modelled as springs. The effective spring constant is 
k = 70 N/m and the mass of the molecule is M = 1.2 
·10-24 kg. At which frequency does the molecule 
vibrate and what is the levelspacing for this harmonic oscillator?  

  b An electron tunnels onto the molecule.  Find the displacement of the molecule ∆x for 
Ex = 1 V/nm. Compare this to the zero-point motion x0 of the molecule and the thermal 
motion xrms at 300 K and 18 mK. 

  c The electron-phonon coupling is defined as λ = ∆x/2x0. Find its value. 
  d Find the amount of energy gained by the displacement of the oscillator after tunneling 

and express this in terms of hf and λ. Explain that this leads to a shift of the charge 
degeneracy points in the stability diagram compared to the case where the molecule is 
fixed.  

  e*  The quantum states of the entire molecule are the product of the electronic and the 
nuclear states. Close to the first charge-degeneracy point, there can only be zero or one 
electron on the molecule, so the electronics states are labeled with n=0 and n=1. 
Quantum states of the molecule are: 

 
  Write down the Hamiltonian for the harmonic oscillator, i.e. the nuclear part of the 

total Hamiltonian, for n=0 and n=1 separately and show that their eigenstates are 
different and that they are given by:  

 
f* Because the atoms are much heavier than an electron, the nuclear wavefunction χ(x) 

stays the same just after the electron has tunneled. If χ(x) was the |ℓ> eigenstate of the 
n=0 Hamiltonian, it will be a linear combination of eigenstates |ℓ’> of the n=1 
Hamiltonian. This means that energy has to be paid when ℓ’ > ℓ, which has to be 
provided by difference between the energy of the electron in lead and the position of 
the electronic level ∆E. Sketch the lines in the stability diagram where a new transition 
becomes available. 

g* Using Fermi’s Golden rule, the rates of tunneling to and from the left and right lead 
can be calculated: 

 
 This expression contains the overlap between the eigenstates of the oscillator in the 

different charge states. Use a Taylor series to prove that** : 

 
h* Calculate the overlap’s of the ground state |ℓ=0> of the oscillator with |ℓ’> and show 

that it is equivalent to the Poisson distribution. More difficult is the calculation of the 
entire overlap matrix <ℓ| ℓ>, but it is possible to do. You can find the answer in 
McCarthy et al, PRB, 67, 245415 (2003). 

                                                
**  Recall that the exponential of an operator is defined as a sum: 

 



Mesoscopic superconductivity 
 
1a Name three properties of a superconductor. Are all of these properties relevant for 

mesoscopic physics? 
  b How small can a superconductor be?   
 
2 On the interface between a normal metal and superconducting material (NS), electrons 

either have enough energy to overcome the gap of the superconductor or they have to 
be “converted” into Cooper pairs, before they can enter the superconductor. 

  a Why is an electron with E-EF > ∆ in the superconductor no longer called “electron”, 
but instead “quasiparticle”? 

  b How many electrons are there in a Cooper pair? What is the total spin of a Cooper 
pair? Which type of statistics do Cooper pairs obey: Boltzmann, Fermi-Dirac or Bose-
Einstein? 

  c Sketch the process of Andreev reflection (AR) as a cartoon. 
  d An NSN junction is made and a current is sent through it. An electron comes in from 

the left and AR occurs at the left interface.  What will happen with the Cooper pair at 
the other side? 

  e When a SNS junction is made, the hole that is generated by AR at the right interface 
travels to the left interface. Explain the multiple Andreev reflection process. State the 
criterion for bound states. 

  f Does Andreev refection occur in a SIS (superconductor-insulator-superconductor) 
 junction? Plot the IV curve and the differential conductance for such a junction. 
 
3 Small islands of different materials are made and connected to source and drain 

electrodes and a gate. Unfortunately the boxes with the different samples fall on the 
ground. One is lost and the others are mixed and it is not possible to distinguish 
between the different samples anymore. The stability diagrams of the remaining SETs 
are measured anyway and the results are shown below. The two of the samples 
consisted of a 100 nm grain made of gold and aluminum. The other two were smaller: 
20 nm in diameter. All measurements were performed at 50 mK. Can you say which 
sample was which? What experiment can be done to determine whether the sample 
with the small island is made of aluminum or gold? 


