Measurements for water

Marie-claire ten Veldhuis

Measurements in urban drainage

Measurements in urban drainage CT3412MI

Marie-claire ten Veldhuis

≈ Urban Water ≈

Urban Hydrological Cycle Rainwater

Urban water flows - urban drainage

Interactions of urban drainage system with surroundings:

Objectives of urban drainage systems

Objectives:

- Protect public health
- Prevent flooding

...while not transferring problems to the environment

Functions:

- Collection of wastewater: water, organic compounds, bacteria, nutrients, soap, medical residues, etc.
- Collection of stormwater: water, sand/clay, oil, heavy metals
- Control and collection of groundwater: water, nutrients, salts
- Transport of wastewater to wastewater treatment plant
- Storage and transport of stormwater to surface water/groundwater

Measurements in urban drainage

What parameters to measure and where ?

Flooding: flood frequency, number of flooded locations

- Flooding: flood frequency, number of flooded locations
- Combined sewer overflows: overflow frequency/yearly overflow volume

- Flooding: flood frequency, number of flooded locations
- Combined sewer overflows: overflow frequency/yearly overflow volume
- Check deficiencies: odour complaints, illicit connections

- Flooding: flood frequency, number of flooded locations
- Combined sewer overflows: overflow frequency/yearly overflow volume
- Check deficiencies: odour complaints, illicit connections
- Calibrate and verify hydrodynamic models Increase understanding of flow processes

- Flooding: flood frequency, number of flooded locations
- Combined sewer overflows: overflow frequency/yearly overflow volume
- Check deficiencies: odour complaints, illicit connections
- Calibrate and verify hydrodynamic models
- Increase understanding of flow processes
- Real-time control and operation

Measurement parameters

- Water levels: quantify overflow frequencies, flooding frequencies, overflow volumes at weirs, calibrate hydrodynamic models
- Discharge: quantify overflow volumes, calibrate models
- Rainfall
- > Water quality parameters, some examples:
 - Temperature: to identify illicit connections
 - Turbidity: erosion and sedimentation processes, relations with other pollutants
 - Oxygen content: odour complaints, effects of organic pollution loads
 - And many more...

Combined sewer overflows:

- > overflow frequency
- > overflow volume
- rainfall
- Measurement parameters?
- Measurement locations?

Flooding:

- Flood frequency
- number of flooded locations
- rainfall
- Measurement parameters?
- Measurement locations?

Check deficiencies:

- > odour complaints
- illicit connections
- > groundwater inflow
- Measurement parameters?
- Measurement locations?

Calibrate and verify hydrodynamic models

- Increase understanding of flow processes
- Measurement parameters?
- Measurement locations?

Measurement locations

Outflow points

- > Overflow weirs (water level)
- Pumping stations (discharge)

Inside sewer system

- Internal weirs (water level)
- > Manholes at critical points in system:
 - Main flow routes
 - Co-currence of large flows
- Specific locations to detect source of problems (e.g. illicit connections, groundwater inflow)

Measurement parameters: Rainfall

Urban areas:

Fast runoff processes \rightarrow Need for fine-scale rainfall data \rightarrow High resolution in time and space

Processes at 5 – 10 minutes time-scale \rightarrow Data at 1 - 5 minutes time-scale Processes at 100 – 1000 m time scale \rightarrow Data at 50 – 500 m spatial scale

Measurement parameters: Urban rainfall

Urban areas:

Fast runoff processes \rightarrow Need for fine-scale rainfall data High resolution in time and space: \rightarrow 1 - 5 minutes time-scale \rightarrow 50 - 500 m spatial scale

Currently available data: KNMI radars: de Billt, Den Helder \rightarrow 5 minutes, 1 km²

Measurement parameters: Urban rainfall

Urban areas:

Fast runoff processes \rightarrow Need for fine-scale rain High resolution in time and \rightarrow 1 - 5 minutes time-scale \rightarrow 50 - 500 m spatial scale

Currently available data: KNMI radars: de Billt, Den \rightarrow 5 minutes, 1 km²

Rainfall radar (RAdio Detection And Ranging)

Rainfall radar

Indirect measurement: sources of errors

23

Rainfall radar for urban areas

ηm

Error sources:

- Overshooting
- Attenuation
- Ground clutter (!high buildings)
- Non-uniform vertical profile

Radar versus rain gauge: - Hourly rainfall

- 42 rain gauges

 \rightarrow Higher resolution: more sensitive to errors

Rainfall radar for urban areas A problem of resolution

15 min accumulation for Crug-y-Gorllwyn, 07-04-2009 (Courtesy MetOffice)

5 km Not noticeable

1 km Highly noticeable

Radar for urban rainfall

RAINGAIN

Objective: to improve fine-scale measurement and prediction of rainfall and to enhance urban pluvial flood prediction

Radar for urban rainfall

27

Pressure sensors

Pressure sensors

Pressure sensors

- > Membrane deforms under pressure
- Condensator translates deformation into electric signal:
- > Deformation \uparrow Electric signal \uparrow
- Electric signal translated into pressure
- > (calibration!)

TUDelft

Pressure translated into water level

Pressure sensors

 \succ Pressure translated into water level:

$$h = \frac{\Delta p}{g(\rho_w - \rho_a)} - \frac{(\Delta p)^2}{2gK(\rho_w - \rho_a)}$$

: water depth (m)

: gravitation acceleration (m/s^2) g Κ

- : Compression modulus (N/m²)
- : density of water (kg/m³) ρ_w
- : density of air (kg/m³) ρ_a

: difference between water Δр pressure and atmospheric pressure (N/m^2)

TUDelft

h

Pressure sensors

Practical considerations:

- Install in tube to protect sensor from damage, debris
- Prevent air entrainment in water near sensor
- Check and correct at regular intervals for zero point drift (pollution of vent tube)

Acoustic sensors

Acoustic sensors

Sound wave travels to water surface – reflects – travels back

- Sensor measures travel time
- ➤ Travel time translated into distance → water level

Acoustic sensors

Practical considerations:

- Minimum distance to water level
- Prevent local reflections
- Check and correct at regular intervals for zero point drift (pollution of vent tube)

Flow measurement at weirs

> Flow derived from water measurement above weir

Flow measurement at weirs

 Flow derived from water measurement above weir
 Location of water level sensor upstream of weir: distance at least >3x water depth

Flow measurement at weirs

- Flow derived from water measurement above weir
- Location of water level sensor upstream of weir: distance at least >3x water depth
- > Check for submerged conditions

Flow measurement at weirs

- > Flow derived from water measurement above weir
- Location of water level sensor upstream of weir: distance at least >3x water depth
- Check for submerged conditions
- Local calibration essential

In full pipes: electromagnetic flow meter

- Water (conductive) flow through magnetic field creates electric voltage
- Voltage translated into flow velocity

In full pipes: electromagnetic flow meter

Applications:

- Outgoing main of pumps in pumping station
- Influent wastewater treatment plant
- Industrial discharge pipe
- Siphons in sewer system

http://youtu.be/f949gpKdCI4

-

In full pipes: ultrasonic flow meter

- Acoustic send/receive sensors across pipe
 Can be clamped on outside of pipe
- Can be clamped on outside of pipe

In full pipes: Doppler flow meter

- Doppler effect: wave length of sound changes as the sound source moves towards or away from the observer
- Can be clamped on outside of pipe

In part-full pipes, measurement principle:

```
Discharge (Q) \rightarrow [m<sup>3</sup>/h]
```

TUDelft

 \rightarrow Water level measurement (h) \rightarrow A(h)

```
\rightarrow Velocity measurement (v)
```


In part-full pipes: Electromagnetic flow meter

- Pressure sensor incorporated for water level
- Velocity measurement electromagnetic principle: at pipe bottom.

In part-full pipes: Electromagnetic flow meter

- Pressure sensor incorporated for water level
- Velocity measurement electromagnetic principle: at pipe bottom.

In part-full pipes: Doppler radar flow meter

Doppler effect: radar wave is reflected on liquid surface
 Separate pressure sensor for water level measurement

In part-full pipes: Doppler radar flow meter

Doppler effect: radar wave is reflected on liquid surface
 Separate pressure sensor for water level measurement
 Translates surface flow velocity to cross-sectional average velocity

Type of measurem ent	Type of sensor	Accura cy	Remarks
Water level	Pressure sensor	++	Submerged sensor: pollution/damage
	Acoustic sensor	+	Air bubbles, turbulence, foam, fat can disturb measurement
Discharge at weir	Pressure sensor at weir	+/-	On-site calibration required; Obstacles/pollution on weir can disturb measurement
Discharge full pipe	Electromagnetic flow meter	++	Only conductive liquids
	Acoustic flow meter	+	Inaccurate at low flows; air bubbles etc. disturb measurement
	Doppler flow meter	+	Sediments, high concentration of susp. solids can disturb signal
Discharge part-full pipe	Electromagnetic flow meter	+/-	Measures flow velocity at pipe bottom: representative of cross-section?
	Doppler radar flow meter	+/-	Measures flow velocity at water surface: representative of cross-section?

Measurement objective: Calibrate and verify hydrodynamic model

- Measurement parameters?
- Measurement locations?

Type of sensors? **fu**Delft

Measurement objective: Calibrate and verify hydrodynamic model

Measurement parameters:

Measurement objective: Calibrate and verify hydrodynamic model

Measurement parameters:

- > Rainfall:
- > Flow:
- > Water levels:

Measurement objective: Calibrate and verify hydrodynamic model

Measurement parameters and locations:

- > Rainfall:
- > Flow:
- > Water levels:

Measurement objective: Calibrate and verify hydrodynamic model

Measurement parameters and locations:

- > Rainfall: 1 rain gauge + radar data KNMI
- Flow: outflow to CSO, outflow of pumping station
- > Water levels:
 - In sewers: near CSO (inside) 2-3 locations along main sewer line (based on experience/first model calculations)
 - > Surface water level near CSO (outside)
 - Groundwater level (if indications of high infiltration rate)

Measurement objective: Calibrate and verify hydrodynamic model

Measurement locations – special remarks:

- > Rainfall: rain gauge in center. ! Select suitable location
- > Flow: preferably in completely filled pipes
 - \rightarrow Outgoing main of pumping station, at CSO only under CSO conditions
- Water levels: easy access for maintenance (i.e. not in manhole on busy road)

Measurement objective: Calibrate and verify hydrodynamic model

Rain gauge
 Flow sensor
 Water level sensor

