Offshore Hydromechanics

Module 1 :

Hydrostatics Constant Flows Surface Waves

OE4620 Offshore Hydromechanics

Ir. W.E. de Vries

November 2007

*f***U**Delft

1

Offshore Engineering

Delft University of Technology

1. INTRODUCTION

- Some definitions
- Floater types
- Relevance of hydromechanics

Floater motions

	static	dynamic	symbol
X :		surge	X
Y:		sway	У
Z :		heave	Z
Around X :	heel, list	roll	φ
Around Y :	trim	pitch	θ
Around Z :	course angle	yaw	Ψ

Axes convention

November 2007

Application

Nearly every offshore design or problem

- DP vessel design
- Semi submersible optimization
- Jacket launch
- FPSO mooring
- Etc. etc.

2. HYDROSTATICS

- Equilibrium situations
 or
- Quasi-static situations

Law of Archimedes : Ευρεκα !!

November 2007

Archimedes Law

The weight of a <u>floating</u> body is equal to the weight of the displaced fluid.

The term "displacement" of a floater refers to its weight.

 $\mathsf{D} = \rho \ \mathsf{g} \ \nabla \ [\mathsf{N}]$

$$\label{eq:phi} \begin{split} \nabla &= \text{submerged volume } [\text{m}^3] \\ \rho &= \text{specific density of the fluid} \\ \text{seawater :} \quad \rho &= 1025 \text{ kg/m}^3 \end{split}$$

Static internal forces, stresses

Consider external (and internal) pressures and the local loads or weights.

Archimedes applies to <u>complete</u> bodies, not to internal forces.

Example : drillstring in mud

Example : drillstring in mud

Effective tension versus = 0 when $F_z = F_b$

$$\rho_s gA\Delta L = \rho_m gAL \qquad \Delta L = \frac{\rho_m}{\rho_s} L$$

Floating Stability

The property of floating bodies that keeps them upright.

Offshore : quiet motion behaviour, in particular in roll.

These two definitions are to some extent contradictory !

Floating Stability

Applications:

- Determine angle of heel due to heeling moment
- Determine shift of center of gravity due to additional mass
- Find center of gravity (inclining experiment)
- Determine static stability curve

Floating Stability

A floating structure at rest is in:

- Horizontal equilibrium
- Vertical equilibrium
- Rotational equilibrium (!)

Weight and buoyancy

November 2007

Heeling Moment

November 2007

Shifting loads

Shifting buoyancy

November 2007

Stabilizing Moment

$$M_{S} = \rho g \nabla GN_{\phi} \sin \phi$$
$$= D.GZ$$

Equilibrium :

$$M_{S} = M_{H}$$

Small angle of heel : sin $\phi \approx \phi$ GZ = GN_{ϕ}. ϕ = GM. ϕ

Rectangular barge

Arbitrarily shaped floater

•At very small angles of heel :

$$\overline{BM} = \frac{I_T}{\nabla}$$

•If side walls are vertical when the unit is floating upright :

$$\overline{BN_{\phi}} = \frac{I_T}{\nabla} \left(1 + \frac{1}{2} \tan^2 \phi \right)$$
 (Scribanti Formula)

•Otherwise : compute the position of B in every heeled position

Static Stability Curve

Static Stability Curve

Characteristics

- Slope at origin = GM
- Maximum GZ value
- Range of stability
- Angle of deck immersion
- Area under the curve

Shifting a load

$$\left|\frac{1}{2}\overline{BM}\cdot\tan^{3}\phi+\overline{GM}\cdot\tan\phi=\frac{p\cdot c}{\rho\nabla}\right|$$

Liquid loads with free surface

$$\overline{GG''} = \frac{\rho' i}{\rho \nabla} \cdot \left(1 + \frac{1}{2} \tan^2 \phi\right)$$

