VLSI Test Technology and Reliability (ET4076)

Lecture 8(2)

IDDQ Current Testing (Chapter 13)

Said Hamdioui

Computer Engineering Lab Delft University of Technology 2009-2010

Learning aims

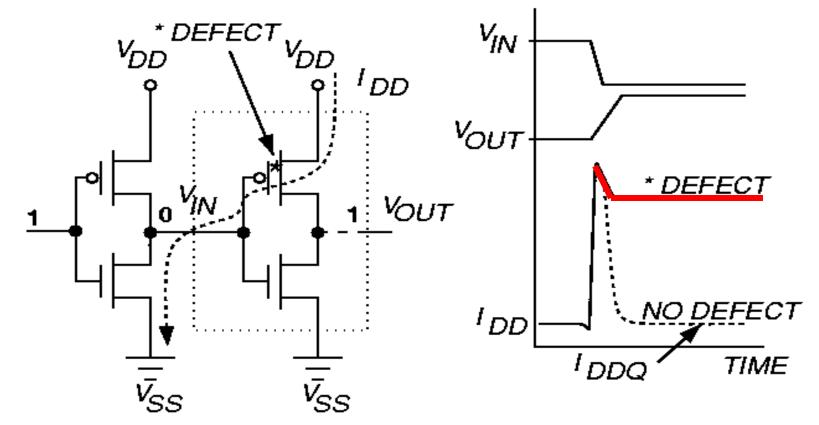
- Describe the concept of current testing IDDQ & its added value
- Describe the major faults and defects that can be detected by IDDQ
- Develop a vector for IDDQ
- State the major limitations of IDDQ and remedies

Contents

- Motivation
- IDDQ Test Concept
 - Pros and cons
 - Coverage
- Vector generation for *IDDQ* tests
- Instrumentation difficulties
- IDDQ testing effectiveness
- Limitations of *IDDQ* testing
- Delta IDDQ testing
- Built-in Current testing
- Summary

Motivation

- Early 1990's Fabrication Line had 50 to 1000 defects per million (dpm) chips
 - IBM wants to get 3.4 *defects per million* (dpm) chips (0 defects, 6 σ)


Conventional way to reduce defects:

- Increasing test fault coverage
- Increasing burn-in coverage
- Increase Electrostatic Discharge Damage awareness

New way to reduce defects:

IDDQ Testing also useful for Failure Analysis

I_{DDQ} Test Concept

In a good circuit, IDDQ (Quiescent current) is negligible

- In a faulty circuit, IDDQ remain elevated after switching
- Measure I_{DDO} current through V_{ss} bus to detect the fault
 - Can also measured through the VDD bus
- ATE or "current measurement device" can perform measurements

VLSI Test Technology and Reliability, 2009-2010

CE Lab, TUDelft

*I*_{DDQ} Test + and -

- □ *I_{DDQ}* **measure** current: slow
- I IDDQ was used functional test, delay test, memory test, ...
- Used to improve the IC reliability, reduce manufacturing cost by 50%, improve filed quality, cut burn-in failures

Problems

- Feature size in the nano-era
- Increase in leakage

I_{DDQ} Test coverage (1)

IDDQ can detect many faults and defects:

- Stuck at faults
- Delay faults
- Weak faults
- Bridging faults
- CMOS Stuck-Open faults
- Leakage current
- Floating gate defects
- Gate Oxide Shorts
- etc

I_{DDQ} Test coverage (2)

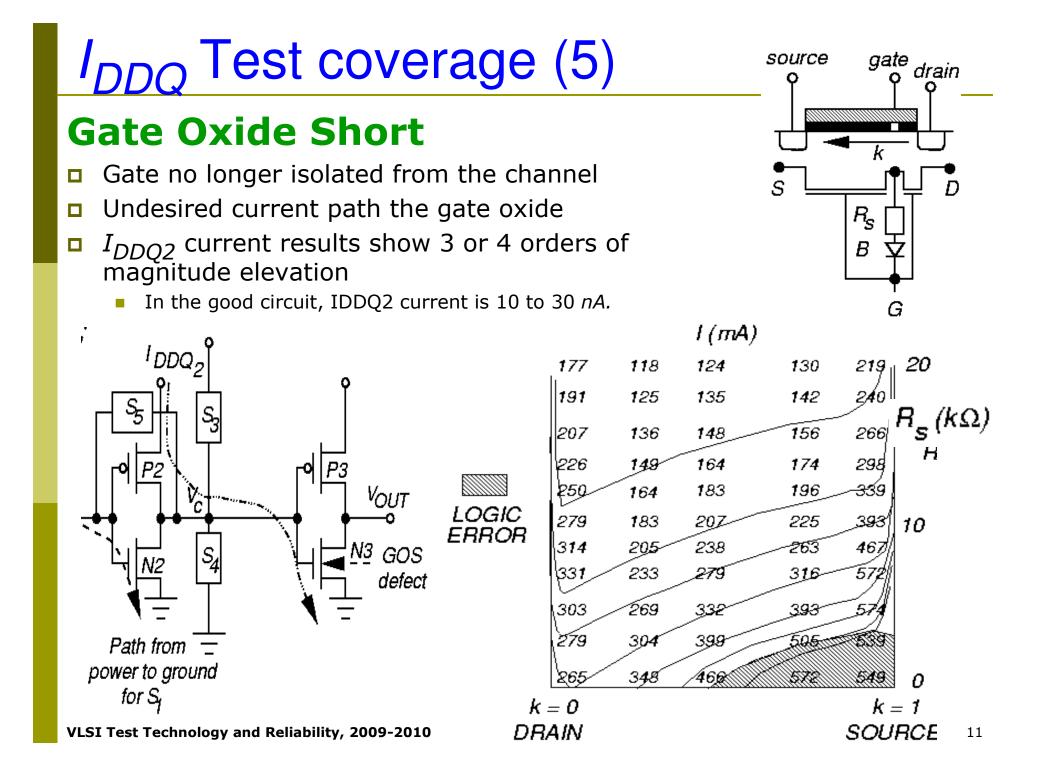
Stuck at faults

- Defects causing n and pFET transistors in a gate to be **on**
- Bridging faults with stuck-at fault behavior

Delay faults

- Most random CMOS defects cause a timing delay fault, not catastrophic failure
- Many delay faults detected by I_{DDQ} test late switching of logic gates keeps I_{DDQ} elevated
- Delay faults not detected by I_{DDO} test
 - Resistive via fault in interconnect
 - Increased transistor threshold voltage fault

I_{DDQ} Test coverage (3)

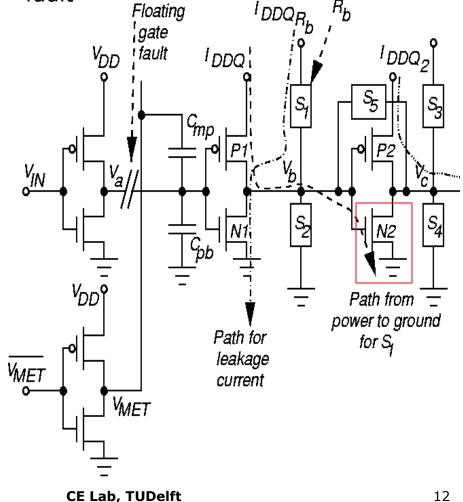

Weak faults

- *n*FET passes logic 1 as Vdd V_{tn}
- *p*FET passes logic 0 as 0 V + $|V_{tp}|$
- Weak fault: transistor not fully turn on, so the signal passed is degraded
 - Increased propagation delay
 - Increases noises

CMOS Stuck-Open faults

- 100% detection not guaranteed
- But work good in practice
 Intermediate voltage of floating gate, hence high IDDQ

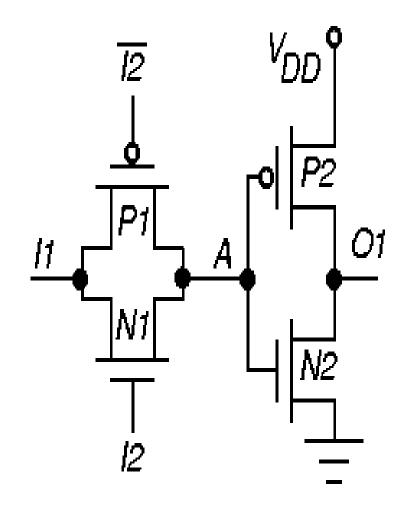
I_{DDO} Test coverage (4) **Floating gate defects NAND** Gate V_{fn} voltage depends on the defect size Small defect (100 – 200 Angstroms) V_{DD} Coupling between the two wires Delay fault Weak voltage at the defective node PA Detected with IDDQ V_A דו ור Large open Floating gate Stuck at fault? Sometime can be detected • If $V_{tn} < V_{fn} < V_{DD} - |V_{tp}|$ Interconnect Break


Vector generation for I_{DDQ} tests (1)

Leakage Fault Detection

[Mao and Gulati]

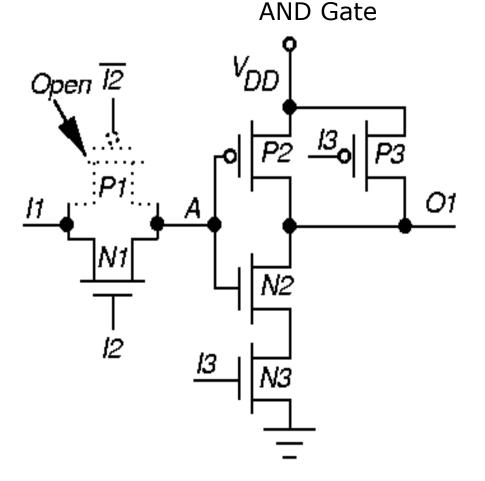
- Sensitize leakage fault
- Detection 2 transistor
 terminals with leakage must
 have opposite logic values, & be
 at driving strengths
- Non-driving, high-impedance states won't work – current cannot go through them


- N2 with gate-source leakage
- Detection requires Vb=1 and VIN=1
- This create the leakage through the fault

Vector generation for I_{DDQ} tests (2)

Weak Fault Detection – P1 (N1) Open

- P1(N1) degrades the input voltage
- Both transistors of inverter remain partially turned on
- Elevating I_{DDQ} from 0 μA to 56 μA



Vector generation for I_{DDQ} tests (3)

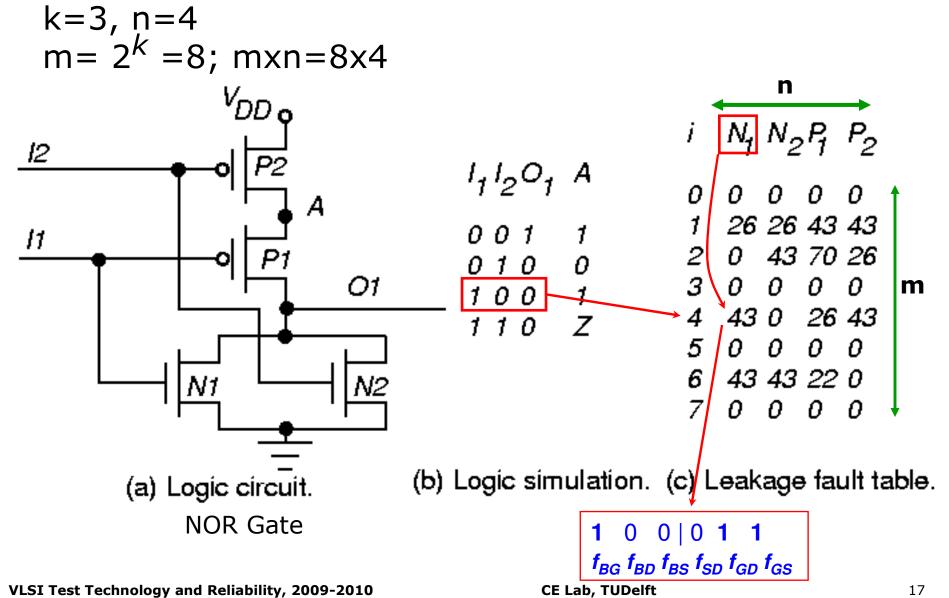
Weak Fault Detection – P1 Open

- P1 degrades the input voltage
- IDDQ will be not elevated unless I3 is set to 1
- No IDDQ path can exist if I3=0

Vector generation for I_{DDQ} tests (4)

Hierarchical Vector Selection

- Generate complete stuck-fault tests
- Characterize each logic component relate input/output logic values & internal states:
 - To leakage fault detection
 - To weak fault sensitization/propagation
 - Uses <u>switch-level</u> simulation (once for each component)
- Store information in *leakage* & weak fault tables
- Logic simulate stuck-fault tests use tables to find faults detected by each vector
 - No more switch-level simulation


Vector generation for I_{DDQ} tests (5)

Leakage Fault Table

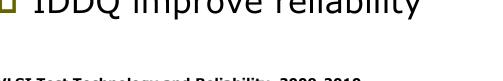
- $\square k = #$ component I/O pins
- n = # component transistors
- $\square m = 2^k$ (# of input / output combinations)
- □ *m* x *n* matrix *M* represents the table
- Each logic state 1 matrix row
- **D** Entry $m_{i i} = \text{octal}$ leakage fault information
 - 6 Flags $f_{BG} f_{BD} f_{BS} f_{SD} f_{GD} f_{GS}$
 - Sub-entry m_{ij} = 1 if leakage fault detected

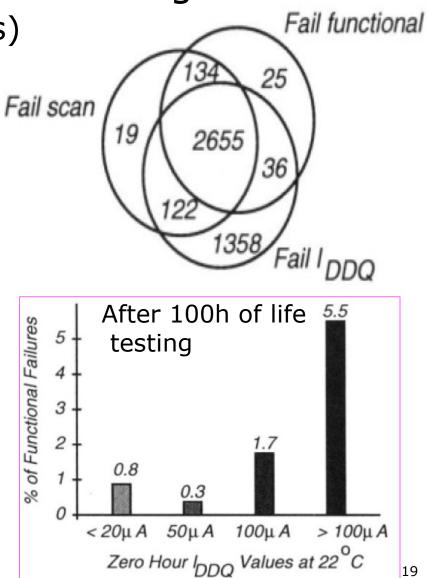
Vector generation for I_{DDQ} tests (6)

Leakage Fault Table: Example

Instrumentation difficulties

Need to measure < 1 µA current at clock > 10 kHz


□ Off-chip *I*_{DDQ} measurements degraded


- Pulse width of CMOS IC transient current
- Impedance loading of tester probe
- Current leakages in tester
- High noise of tester load board

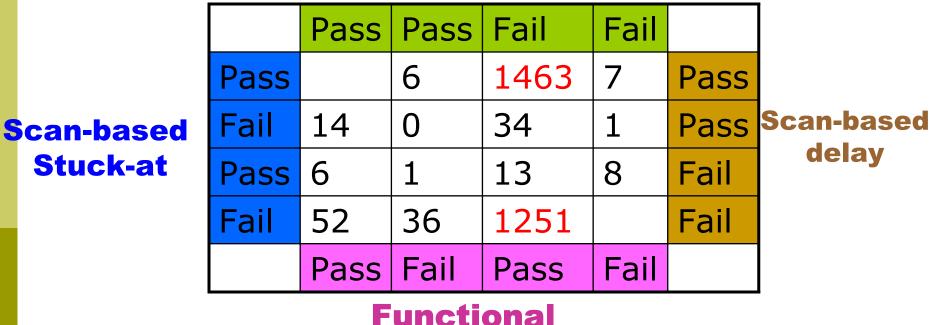
Much slower rate of current measurement than voltage measurement

IDDQ testing effectiveness

- HP static CMOS standard cell design (8577 gates and 436FFs)
- There is less correlation between IDDQ failures and voltage failures in general
- A mixture of testing methods is required to achieve a high product reliability
- IDDQ improve reliability

IDDQ testing effectiveness... Sematech Study(1)

- IBM Graphics controller chip CMOS ASIC, 166,000 standard cells
- 0.8 μm static CMOS, 0.45 μm Transistors (L_{eff}), 40 to 50 MHz Clock, 3 metal layers, 2 clocks
- Full boundary scan on chip


Tests:

- Scan-based stuck-at faults (99.7% FC, slow 400ns rate)
- Functional tests (design verification patterns;52% SAF FC; manually created)
- Scan based delay fault test (90 % transition delay FC)
- *I_{DDQ}* Tests (125) (96 % pseudo-stuck-at fault coverage).

IDDQ testing effectiveness... Sematech Study(2)

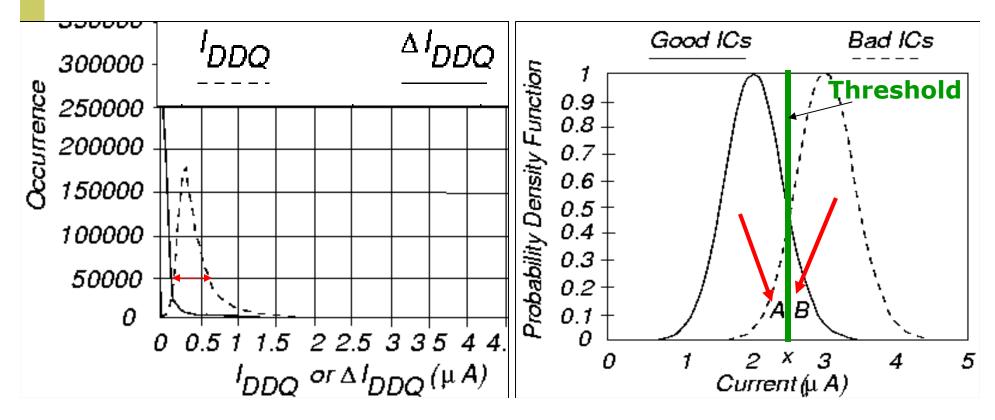
- □ Test process: Wafer Test → Package Test → Burn-In & Retest → Characterize & Failure Analysis
- Data for devices failing some, but not all, tests.

IDDQ (5 µA limit)

All test methods uniquely detected some defect class
 => none can be dropped from the test program

IDDQ testing effectiveness... Sematech Study(3)

Sematech Conclusions:


- Hard to find point differentiating good and bad devices for I_{DDQ} & delay tests
- High # passed functional test, failed all others
- **\square** High # passed all tests, failed $I_{DDO} > 5 \mu A$
- Large # passed stuck-at and functional tests
 - Failed delay & IDDQ tests
- Large # failed stuck-at & delay tests
 - Passed I_{DDQ} & functional tests
- Delay test caught delays in chips at higher temperature burn-in
 - chips passed at lower temperature

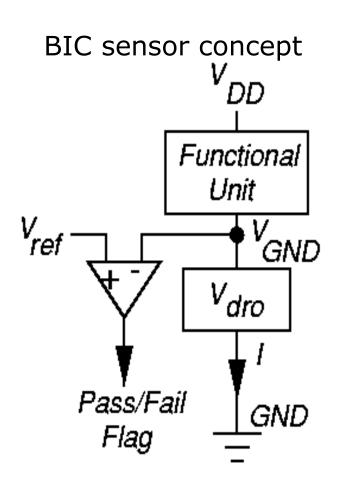
Limitations of *I_{DDQ}* Testing

- Sub-micron technologies have increased leakage currents
 - Transistor sub-threshold conduction
 - Harder to find I_{DDO} threshold separating good & bad chips
- I_{DDQ} tests work:
 - 1. When average defect-induced current greater than average good IC current
 - 2. Small variation in I_{DDQ} over test sequence & between chips
 - Detect passive defects and active defects simultaneously
- Now less likely to obtain two conditions (scaling)
 - Some predict the end of IDDQ testing

Delta I_{DDQ} Testing..... [Thibeault]

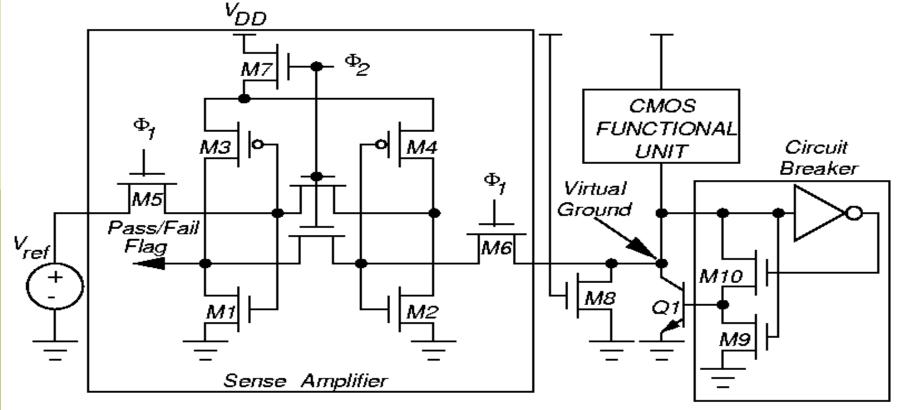
- Use derivative of I_{DDQ} at test vector as current signature
- $\Delta I_{DDQ}(i) = I_{DDQ}(i) I_{DDQ}(i-1)$
- Leads to a narrower histogram
- Eliminates any variation between chips (wafers)

Delta I_{DDQ} Testing..... Results


$\Box \Delta I_{DDQ}$ Testing versus I_{DDQ} testing Results

- P: probability of a false decision
- AI_{DDQ} eliminates any constant (vector-insensitive) current increase due to process drift by differential operation
 - But process drift may still increases the measurement variations between vectors

Item	I _{DDQ}	$\Delta \mathbf{I}_{DDQ}$
RYL (yield loss ratio)	4.4e-4	3.5e-3
RTE (test escape ratio)	1.8e-1	2.1e-3
P (= RYL + RTE)	Piddq = 1.8e-1	<i>Pdelta</i> = 5.6e-3
Gain in test quality	Piddq / Pdelta = 31	


Built-in Current Testing.... [Maly and Nigh]

- Build current sensor into ground bus of device-under-test
- Voltage drop device (V_{dro})& comparator
 - Compares virtual ground
 V_{GND} with V_{ref} at end of each clock
 - V_{GND} > V_{ref} only in bad circuits
 - Activates circuit breaker when bad device found

Built-in Current Testing.... Example

- A bipolar transistor is used to get better resolution for current detection
- Circuit Breaker disconnect the defective functional unit from power when abnormal currents occur (e.g., due to VDD-GND shorts)

Summary

 \Box I_{DDO} tests improve reliability, find defects causing:

- Delay, bridging, weak faults
- Chips damaged by electro-static discharge
- No natural breakpoint for current threshold
 - Get continuous distribution bimodal would be better
- Conclusion: now need stuck-fault, I_{DDQ}, and delay fault testing combined
- \Box I_{DDO} testing is becoming more problematic
 - Greater leakage currents in MOSFETs in deep sub-micron technologies
 - Harder to discriminate elevated I_{DDQ} from 100,000 transistor leakage currents
- $\Box \Delta I_{DDQ}$ holds promise to alleviate problems
- Built-in current testing holds promise