VLSI Test Technology and Reliability (ET4076)

Lecture 9 (2)

Built-In-Self Test

(Chapter 15)

Said Hamdioui

Computer Engineering Lab Delft University of Technology 2009-2010

Learning aims

- Describe the concept and the architecture of BIST
- Compare BIST different implementations
- List the pros and cons of BIST
- Develop a BIST at higher level

Contents

- Motivation
- General BIST Architecture
- BIST Hierarchy
- BIST Building blocks
- Aliasing
- BIST Cost
- Logic BIST implementation
 - Test-Per-Clock BIST
 - Scan Based Test
- Memory BIST
- Summary

BIST Motivation.....(1)

BIST Motivation.....

To solve variety of test problems

- Solve Test-Access problem (Lack of direct pin access)
 Increasing chip logic-to-pin ratio harder observability
- Ability to carry out "At Speed Test"
 - Increasing difficulty in performing at speed test using ATE
- Useful for field test and diagnosis
 - Less expensive than a local ATE
- Improve diagnosis (system, board, component)
 Increasingly dense devices and fast clocks
- Reduce test cost
 - Increasing test generation and application times
- Shortage of test/DFT engineers
- Hard testability insertion
 - Designers unfamiliar with gate-level logic, since they design at behavioral level

BIST Motivation.....(3)

Other advantages

- Reduce chip pin count = reduced # ATE driver/sensor channels
- Reduce program runtime (depends on # of tests and clock frequency)
- Lower system test effort
- Improved system maintenance and repair
- Improved component repair
- Lower test development cost
 - BIST can be automatically added with CAD tools
- Can test many units in parallel

BIST Motivation.....(4)

In the past

- BIST was seen as "one off" investment
- Once it has been used and device passed the tests, there was no further use of BIST
- => Hard to economically justify BIST

Today

- Boundary scan changed the view
- Access of BIST through boundary scan
- BIST can be re-run at all stages of the product cycle
 - Especially system level for diagnostic purposes
- => Various form of BIST are being requested
 - By designers in system companies
 - By EDA companies to respond with appropriate testsynthesis tools

General BIST Architecture

- BIST cannot test wires (and transistors):
 - From PI pins to Input MUX
 - From POs to output pins
 - Can be tested using ATE or JTAG
- In normal mode: PIs \rightarrow input MUX \rightarrow Circuit \rightarrow POs

VLSI Test Technology and Reliability, 2009-2010

BIST Hierarchy

- BIST Hierarchy at all three levels of packaging
 - System has multiple PCBs, each with multiple chips
- System Test controller can activate self-test simultaneously on all boards
- Board Test Controller can activate self-test on all chips
 - Chip Test Controller executes self-test and transmits results to Board Test Controller
 - Board Test Controller accumulates results from all chips and transmits them to System Test Controller
 - System Test Controller use the results to e.g., isolate the faulty chips and boards
- BIST Diagnosis effective only if very high fault coverage considered

Many approaches

- ROM
 - Very expensive in chip area
- LFSR: Linear Feedback Shift Register
 - Generate Pseudo-random tests (1M or more)
 - Use very little hardware
 - Currently the preferred BIST pattern generation method
- Binary counters
 - Generate exhaustive test sequence
 - Too much test time if # of PIs is huge
 - Use more hardware than LFSR
- LFRS combined with few patterns in ROM
 - To augment the fault coverage
- Modified counters

LFSR: Linear Feedback Shift Register

- A shift register with feedback from the last stage and others
- It has no other input beside the clock
- Outputs of FFs form the test pattern
- Number of unique test patterns is equal to the # of the states of the circuit

Determined by the # and locations of feedbacks

Two types:

Standard LFSR (External XOR LFSR)

Modular LFSR (Internal XOR LFSR)

Example: Standard LFSR

• Characteristic polynomial $f(x) = 1 + x + x^3$

Initialized to 001 (7 patterns)

Generic Standard LFSR:

- Produces patterns algorithmically repeatable
- Has most of desirable random # properties
- Need not cover all 2ⁿ input combinations
- Long sequences needed for good fault coverage

VLSI Test Technology and Reliability, 2009-2010

Generic Modular LFSR

- Described by companion matrix $T_m = T_s^{T}$; $X(t + 1) = T_m \times X(t)$
- Equivalent to standard External XOR LFSR
 - With a different state assignment; Faster usually does not matter
 - Same amount of hardware

LFSR Theory (see book)

- Cannot initialize to all 0's (it hangs)
- □ If X is initial state, progresses through states X, $T_s X$, $T_s^2 X$, $T_s^3 X$, ...
- Matrix period:
 - Smallest k such that $T_s^k = I$
 - k is LFSR cycle length
- Described by characteristic polynomial:

 $f(x) = |T_s - IX| (=|T_m - IX| \text{ if modular LFSR})$ = 1 + h₁ x + h₂ x² + ... + h_{n-1} xⁿ⁻¹ + xⁿ

□ <u>Maximal-length</u> LFSR if period K=2ⁿ-1

- Bottom: Random-Pattern Resistant circuit (like PLAs)
 - Requires weighted pseudo-random pattern generation
 - Or insertion of testability hardware

VLSI Test Technology and Reliability, 2009-2010

CE Lab, TUDelft

Weighted Pseudo-Random Pattern Generation

□ If p(1) at all PIs is 0.5, $p_F(1) = 0.5^8 = 1/256$

 $p_F(0) = 1 - (1/256) = 255/256$

- Will need enormous # of random patterns to test a stuck-at 0 fault on F -- LFSR p (1) = 0.5
 - We must not use an **ordinary** LFSR to test this
- IBM holds patents on weighted pseudo-random pattern generator in ATE

- Severe amounts of data in CUT response to LFSR patterns
 - Example:
 - Generate 5 million random patterns
 - CUT has 200 outputs
 - Leads to: 5 million x 200 = 1 billion bits response
- Uneconomical to store and check all of these responses on chip
- Responses must be compacted

Signature analysis using LFSR

Single-Input Signature Register/ Analyzer (SISR)

Also known as Cyclic Redundant Check Code CRCC

- Treat data bits from circuit POs to be compacted as a decreasing order coefficient polynomial
- SISR divides the PO polynomial by its characteristic polynomial
 - Leaves remainder of division in LFSR
 - Must initialize LFSR to <u>seed</u> value (usually 0) before testing
- After testing
 - **c** compare signature in LFSR to known good machine signature

Critical: Must compute good machine signature

Single-Input Signature Register (SISR)

Example:

- LFSR seed value is 0000
- PO polynomial: 10001010 $\rightarrow x^7 + x^3 + x$
- Characteristic polynomial: x⁵+x³+x+1
- Remainder of division: x³+x²+1 (=01101)

Problem Single-Input Signature Register (SISR)

- Too much hardware if one of these is put on each primary output (PO)
- E.g., if 200 outputs, 200*5 FFs, and 3*200 XOR gates will be required for the previous example

Solution:

- MISR: Multiple-Input Signature Register
- compacts all outputs into one LFSR
 - Works because LFSR is linear obeys <u>superposition</u> <u>principle</u>
 - Superimpose all responses in one LFSR
 - Final remainder is XOR sum of remainders of polynomial divisions of each PO by the characteristic polynomial

Multiple-Input Signature Register

Example:

- PO polynomials:
 - □ PO2=d1=01101 \rightarrow x³+x²+1

PO1=d0=01010 → x^3+x PO3=d2=01000 → x^3

- Characteristic polynomial: x³+x+1
- Resulting signature is the XOR of the three different signatures due to the polynomial division of each of the three POs

Aliasing

- When using compaction, the resulted compacted signature may be identical to the fault-free signature
 aliasing
 - It lowers the fault coverage
- Example
 - Transition count (TC)

Fault will be **not detected** as TC=2 in both cases

Aliasing

- Parity checking
 - Aliasing frequently occurs
- One counting
 - Permutes placement of 0's and 1's
- Count transition
 - Alias less than one counting
 - It checks for correct number of 0's and 1's AND also partially the correct ordering of 0's and 1's
- MISR
 - Aliasing depends on k: polynomial degree (e.g., k=3 for x³+x+1)
 - The larger k, the smaller the aliasing
 - Aliasing probability is about 1/2^k
 - MISR has more aliasing than LFSR on single PO

AliasingExperiment Hardware

 3 bit exhaustive binary counter for pattern generator

Pattern	Responses			
abc	Fault-free	a sa1	f sa1	b sa1
000	0	0	1	0
001	1	1	1	0
010	0	1	1	0
011	0	1	1	0
100	0	0	1	1
101	1	1	1	1
110	1	1	1	1
111	1	1	1	1
Signatures				
Transition count	3	3	0	1
LFRS	001	101	001	010

CE Lab, TUDelft

BIST Costs

- Chip area overhead and pin overhead:
 - Test controller
 - Hardware pattern generator
 - Hardware response compacter
 - Testing of BIST hardware
 - At least 1 pin needed to activate BIST operation
- Performance overhead
 - Extra path delays due to BIST
- Yield loss
 - Due to increased chip area or more chips in system because of BIST
- Reliability reduction
 - Due to increased area
- Increased BIST hardware complexity
 - happens when BIST hardware is made testable

Logic BIST implementation....Classification

Test-Per-Clock BIST

- Also called Concurrent Built-In Logic Block Observer **CBILBO**
- FFs at the inputs of the kernel/circuit are configured as parallel pattern generation (e.g., LFSR)
- FFs at the output of the kernel/circuit are configured as signature analyzer (e.g. SISR, MISR)
- (Faults are tested every clock period)

(a) Test-per-clock system.

(b) Large input count test-per-clock system.

Test-Per-Scan BIST

VLSI Test Technology and Reliability, 2009-2010

Logic BIST implementation....Classification

Test-Per-Scan BIST

- Also called **STUMPS** (Self-Test Using MISR and Parallel SRSG
- The FFs of the circuit are configured as one or more scan chains
- Pattern generator and Signature analyzer are <u>added</u> to the circuit
- Testing of a faults is done in many clock cycles (scan-in test vector, conduct the test, scan-out the response)
- Take significantly more time than Test-Per-Clock BIST
- To reduce the length of PRPG and MISR and improve the randomness of PRPG, optional Linear Phase Shifter and Comparator are used

Logic BIST implementation....Comparison

Hardware overhead

- Test-Per-Clock BIST requires the replacement of the circuit FFs with special configurable registers (normal, scan, pattern generator, signature analyzer)
- Scan based BIST requires the replacement of circuit FFs with scan FFs; it also requires additional registers for pattern generation and signature analyzer.
- Area overhead for Scan Based BIST is lower only if the circuit is large.

Test application

- Test-Per-Clock BIST supports at speed-testing
 - Covers faults due transients in power/ground lines due to switching
- Scan based BIST requires SCL+1 for a single test
 - SCL: length of the longest scan path
- Scan based BIST can be implemented at the chip level
 - Even if the modules do not have BIST circuitry (but include scan design)
- Scan based BIST most used in industry

Memory **BIST**

General architecture

- Input Test generator
 - Address & Data
- Output analyzer
 - Compare & pass/fail
 - Response Data Evaluate
- Overall controller
 - Communication

Cost

- Some design effort
- Learning curve
- Chip area

Advantages

- + Short test time as compared with scan
- + The only practical & cost-effective solution for large <u>embedded</u> memories (>16KB?)
- + At speed testing
- + Diagnosis capabilities
- + No expensive ATE required

Summary (1)

BIST architecture

- Patten generator
- Response compaction
- Comparator
- Test controller

Preferred BIST methods

- LFSR pattern generator
- MISR response compacter

Two ways to implement BIST

- Test-per-clock (CBILBO)
- Test-per-scan (STUMPS)

Summary(2)

BIST benefits:

- At-speed testing for delay & stuck-at faults
- Drastic ATE cost reduction
- Field test capability
- Faster diagnosis during system test
- Less effort to design testing process
- Shorter test application times

BIST cost

- Overhead
 - Test controller, extra circuit delay, Input MUX, pattern generator, response compacter, DFT to initialize circuit & test the test hardware, at least one additional pin
- Performance overhead and yield loss