VLSI Test Technology and Reliability

Said Hamdioui

Delft University of Technology Computer Engineering Lab Mekelweg 4, 2628 CD Delft The Netherlands

S.Hamdioui@tudelft.nl http://ce.et.tudelft.nl/~said

Skype: Said.Hamdioui Tel: +31- 15 278 3643 +31- 62 880 2494

Office: EWI/15.020

2009-2010

Instructor

Education

- 1997: MSEE from TU Delft (Cum Laude)
- 2001: PhD from TU Delft (Cum Laude)

Employment

- Intel, CA, USA (3 years)
- Philips Semiconductors R&D, Crolles, France (1 year)
- NXP Semiconductors , Nijmegen, the Netherlands (2.5 years)
- TU Delft (~2.5 years)

Research area

- VLSI Test technology, Reliability and fault tolerance
- Silicon and non-silicon technology

Publications

- One book
- Over 70 journals and conference papers

Goals of today...

- Understand the course organization, outline, examination, etc
- Be able to describe the importance of VLSI test technology and reliability for ICs
- Become familiar with key words in the field
- Be able to describe the major challenges in the field

Topics of today

- What is VLSI Test Technology and Reliability?
- Motivation
- About the course (organization, materials, goals, plan, ...)
- Introduction to IC test
 - Definitions and concepts
- VLSI realization process
- Design for testability
- Manufacturing test flow
- Trends in SoC design and test

What is VLSI Test and reliability?

Test/Quality

- Guarantee that the IC performs its function at t=0
- Conformance to specifications: time-independent
- Measured in <u>DPM</u> (defects part per million)
- Driven by defect/fault coverage & performance guard-bands
- Impacts B2B relationship

Reliability

- Guarantee that the IC performs its function for $t \ge T_{lifetime} > 0$
- Meeting specification over time: time-dependent
- Measured in **FIT** (Failure in 10⁹ device-operating hours)
- Driven by changing material properties, application profile, environment,...
- Impacts C2B relationship

Strong correlation between Quality & Reliability

Motivation..... time, cost, quality

Quick to market advantages:

- Predictability 0.95T<T<1.05T
- First in the market
- Fast response to competitive threat

Time to Market

Customer satisfaction

- Test escapes
- First good chip
- Reliability

Board System Product

- Diagnosis
- Rework/ repair

Chip Overhead IC

- Si area overhead
- Pad overhead

Test application

- Tester cost
- Testing time
- DFT cost

Predictability & Reliability are the driving factors

Ref: SIA roadmap

The share of test cost continuously increases

About the course..... organization and materials

VLSI Test Technology and Reliability

• Code: ET4076

Course material:

- Book: Essentials of Electronic Testing for Digital, Memory and Mixed-Signal VLSI Circuits, M. L. Bushnell and V. D. Agrawal
- Additional reading: scientific papers

Assessment:

- Oral exam (or writing a chapter): 90%
- Assignments: 10%
- **ECTS**: 4
- Expected prior knowledge
 - Digital design
 - Some knowledge about IC manufacturing

About the course..... Contents

Things you'll be learning:

- VLSI Test philosophy
- Defects and fault modeling
- Test schemes/Design for testability for digital circuits
 - Algorithms, Scan design, Delay Test, etc
- Memory testing
- Boundary Scan
- Built-In-Self Test
- Testing for reliability
- Future trends in digital design and test
- Better understand the weaknesses of IC's and do research on VLSI Test
- Become a better VLSI designer

The basics of testing digital circuits: theory and practice

Introduction to IC Testing.... Verification vs. Testing

- <u>Design synthesis:</u> Given an I/O function, develop a procedure to manufacture a device using known materials and processes.
- Verification: Predictive analysis to ensure that the synthesized design, when manufactured, will perform the given I/O function [after development]
- <u>Test:</u> A manufacturing step that ensures that the physical device, manufactured from the synthesized design, has no manufacturing defect [after manufacturing].

Introduction to IC Testing.... Verification vs. Testing

1. (Design) Verification

- Verifies correctness of design (target design errors)
- Performed by simulation, hardware emulation, or formal methods.
- Performed once prior to manufacturing
- Responsible for quality of design

2. (Manufacturing) Testing

- Verifies correctness of manufactured IC (target manufacturing defects)
- Two-part process:
 - Test generation: software process executed once <u>during design</u>
 - Test application: electrical tests applied to hardware
- Test application performed on every manufactured device
- Responsible for quality of devices

Introduction to IC Test.... Definition

TESTABILITY:

- The ability to SYNTHESIZE, GENERATE, EVALUATE, APPLY and OBSERVE tests to satisfy
 - A range of predetermined objectives e.g.,
 - Fault coverage, Defect level, Time-to volume, etc
 - Subject to two fundamental constraints : TIME and MONEY

Testing has a profound effect on the cost

Introduction to IC Test.... Why testing?

- The motivation is the QUALITY where:
 QUALITY= Meeting the expectation of the customer
- Manufacturing process is complicated & time consuming
- Defects are inevitable
 - Original silicon: E.g., impurities, dislocations
 - Manufacturing process: process variation, temperature fluctuations, opens, shorts, extra/missing transistors, spot defects, etc
 - Soft faults (in field)
 - Increase speed and noise margin reduction reduce robustness
 - Nanometer technologies sensitive to radiation (at sea level)

Testing is indispensable

Introduction to IC Test *Ideal versus real tests*

Ideal tests

- Detect all defects produced in the design and/or manufacturing
- Pass all functionally good devices
- Fail all functionally bad devices
- Detect all reliability related defects

Real tests

- Very large number of possible defects need to be tested
- Difficult to generate tests for some real defects (defect oriented testing)
- Based on analyzable <u>fault models</u>
- Incomplete coverage of modeled faults due to high complexity/ high cost
- Some good chips are rejected (yield loss)
- Some bad chips pass (escapes/ defect level in Defect-Per-Million DPM)

Introduction to IC Test Escapes and yield loss

Introduction to IC Test Goal of R&D

- Research targets product COST & QUALITY
- Current tests PARTLY target real fails
- Research identifies real fails to reduce cost and increase quality

Introduction to IC Test Testing depends on

Application

- Toys
- Consumer electronics
- Automotive/security
- Healthcare/aerospace

Quality

Lowest

Low

High

Highest

Budget

Lowest

Moderate

High

Highest

Circuit type

- Digital logic
- Memory

- Analog
- RF

Testing stage

- Characterization (first silicon sample)
- Production test (wafer test, e-sort)
- Reliability test

Introduction to IC Test Cause of escapes

Timing related defects

- Complete timing testing impractical
- Increased speed makes circuits more sensitive to smaller delays
 - Number of small delay defects increases rapidly

Un-modeled faults/Untested faults

Not all faulty behavior identified and modeled/test time limitations

Environmental failures

- Failures at specific temperatures and/or voltagesNoise related failures/ signal integrity

Circuit/process sensitivities

Design not verified over complete range of specifications

Soft errors

Memory sensitivity increases with each technology generation

Introduction to IC Test.....Roles of Testing

Detection:

Determination whether or not the *device under test* (DUT) has some fault.

Diagnosis:

Identification of a specific fault that is present on DUT.

Device characterization:

Determination and correction of errors in design and/or test procedure.

Failure mode analysis (FMA):

Determination of manufacturing process errors that may have caused defects on the DUT.

Today VLSI realization process

Design for Testability DFT

- DFT refers to those design techniques that make test generation, test application and test evaluation cost-effective.
- DFT helps answering three main questions:
 - Can tests that detect all faults assured?
 - Can test development time be kept within economical limits?
 - Can test execution time be kept within economical limits?

Design for Testability DFT

- Electronic systems consists of different components
 - Digital logic
 - Memory blocks
 - Analog and mixed-signal blocks
- Each component requires specific DFT

- Component level-DFT is not sufficient for producing testable system
 - Access mechanism to the embedded component needed

Design for Testability DFT

- DFT methods for digital circuits
 - Ad-hoc methods
 - Structured methods:
 - Scan/ Partial Scan
 - Built-in self-test (BIST)
 - Boundary scan
 - Test compression
 - •
- DFT method for mixed-signal circuits
 - Analog test bus
 - BIST??

Manufacturing test flow

- Three main sources of test info:
- Initial test set from older technologies → adapt it
- New technologies introduces new faults → additional tests required (R&D)
- Depending on target yield (and customer returns), test set is adapted (using e.g., failure analysis)

 Test adaptation LOOP: Test application → Yield/failure analysis → R&D

Testing Costs

- Design for testability (DFT)
 - Chip area overhead and yield reduction
 - Performance overhead
- Software processes of test
 - Test generation and fault simulation
 - Test programming and debugging
- Manufacturing test
 - Automatic Test Equipment (ATE) capital cost
 - Test center operational cost

Testing CostsManufacturing Testing in 2000AD

0.5-1.0GHz, analog instruments, 1024 digital pins: ATE purchase price

$$= $1.2M + 1024 \times $3000 = $4.272M$$

- Running cost (five-year linear depreciation)
 - = Depreciation + Maintenance + Operation
 - = \$0.854M + \$0.085M + \$0.5M
 - = \$1.439M/year
- Test cost (24 hour ATE operation)
 - $= $1.439M/(365 \times 24 \times 3600)$
 - = 4.5 cents/second

Assume: Circuit test time is 6 sec.

This results in test cost as 27 cents.

If only 65% pass the test (yield), the test contribution to the price of a good chip is 27/0.65 = 41.5 cents.

Trends in SoC design & test

- Enhancement in semiconductor IC & technology
 - Integration density is steadily increasing
 - Feature sizes decreasing (10nm in 2011?)
- More & different devices included and new types of structures integrated
 - → Increase in complexity
- This impacts:
 - Design styles
 - Power ($P_{dyn} = \alpha.C.f.Vdd^2$)
 - Leakage (static and dynamic)
 - Testing (digital, analog,...)
 - Reliability (electromigration, ESD,...)
 - Signal integrity (cross talk, signal propagation, supply noise, ...)

Design is no longer a matter of switches, zeros and ones....
It is about resistors, capacitors, inductors, noise, interference, radiation, etc.

Trends in SoC design & test..... Density

Consequences

- Test complexity
- High leakage
- Cross talk
- Voltage drop
- Supply bounce
- EMC (electromagnetic compatibility)
- Propagation delay
- Reliability
- Radiation
-

Number of transistors/chip increases ~ 60% per year (Moore's law, April 1965)

Trends in SoC design & test..... Performance

Consequences

- At speed testing
- Delay testing
- Switching (di/dt) noise
- EMC
- ATE cost (Agilent)
 - ~2M\$ +3K\$/pin??
 - Speed ∼ 650Mhz??

....

Exponential increase in the clock rate ~60% /year [till ~ 2004]

Trends in SoC design & test multi-core

- 2001: Intel warned about the dangers of heat dissipation in processors. Solution: lay in producing chips with multi-cores
- 2004: announcement of dual-core processors
 - Increase productivity, Powerful energy-efficient performance, Leading-edge advanced computing experiences, etc
- Many-core, multi-core will be dominating

- Cross talk, interferences, noise from power lines
- Test complexity
- Temperature related faults
- Process variations (..., 0.13um, 90nm, 65nm, 45nm, 32nm, ...)

Intel dual core

Trends in SoC design & test......

Design is no longer a matter of switchers, zeros and ones....

It is about resistors, capacitors, inductors, noise, interface, radiation, etc.

SoC & scaling impacts e.g.,:

Design

- Increase in the design-productivity gap
- Styles has to be changes to make design manageable
- Design reuse (time-to-market)

Power dissipation

- Lower power design techniques

Testing, Reliability & Sig. Integrity

- Complexity (embedded blocks)
- Time consuming
- Electromigarion
- Signal interference/ Cross talk
- Noise
- ...
-

(High cost associated with scaling)

.

Research topics & roadmap @ CE-TUDelft

System/architecture approach

Design for Testability and Reliability

- Cores: Multi-core, nano-computing
- Interconnect: NOC
- Memory:
 - Conventional: SRAM, DRAM
 - Future: PCM, CMOL
- Computer Aided Test (CAT) Tools
- New Technology: 3D integration

Some successful stories and ongoing activities...

Canada

Intel, CA

Design of Systems on Silicon,

Valencia, Spain

MTD, Germany

Infineon Technologies, Munich, Germany

Atmel, France

ST Microelectronics, France

Philips/ NXP, Netherlands

Summary

- Test technology is an integral part of IC design manufacturing
- Test is becoming more important with technology scaling
- Design for testability
- Reliability, FIT, test, fault models, verification
- Yield, Yield loss, DPM, escapes,
- Detection, diagnosis, failure analysis, characterization
- Many challenges due to technology scaling
 - design, manufacturing & test