VLSI Test Technology and Reliability (ET4076)

Lecture 2 (1)

VLSI Test Process and Test Equipment (Chapter 2)

Said Hamdioui

Computer Engineering Lab Delft University of Technology 2009-2010

Previous lecture

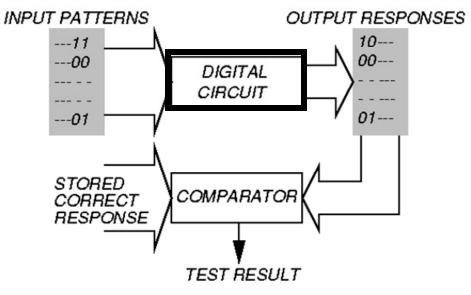
- □ What is VLSI Test? Why is it needed?
- What is the difference between quality and reliability?
- □ Is VLSI Test related to design? How?
- What does the rule of ten mean?
- What is the difference between verification and testing?
- What is 'Fault Model', Yield (loss)', 'Escapes'?
- What does DFT mean?

VLSI Test Technology and Reliability, 2009-2010

Learning aims of today

- The explanation of different stages of testing
- The difference between parametric and functional/structural testing
- Basic concept about test program generation
- ATE test cost and ways of reduction

Contents


Test process
Test stages
Test types
Test program generation
Automatic Test Equipment

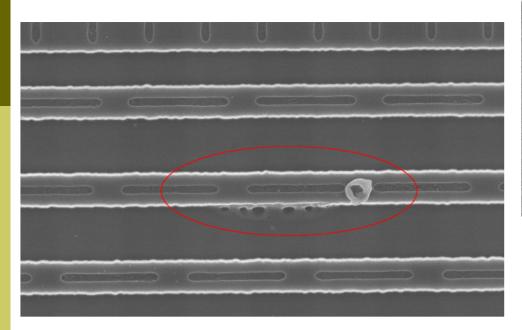
Testing Principle

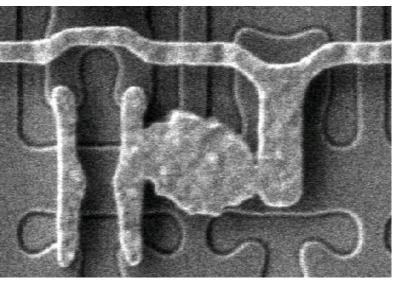
Test vectors, expected responses, matching

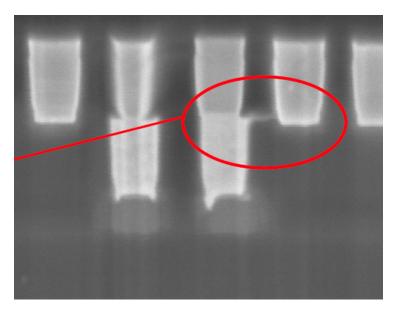
- VLSI Devices are tested by Automatic Test Equipment
 - Powerful computer operating under the control of a test program

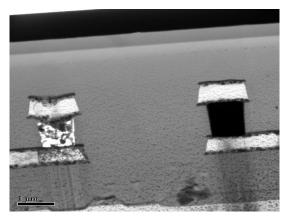
VLSI Test Technology and Reliability, 2009-2010

Characterization, debug design, (Verification testing)


Manufacturing/production testing

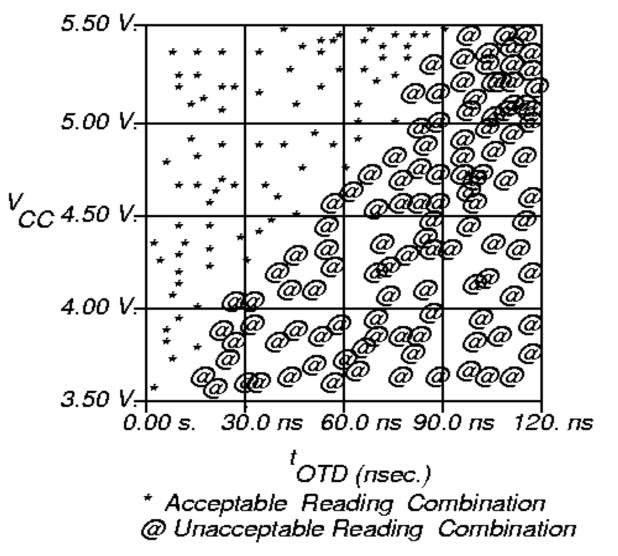

Burn-in (Testing for reliability)


Acceptance testing (incoming inspection)


- Verifies correctness of design and of test procedure usually requires correction to design
- Ferociously expensive
- Performed on a new design before production
- Purpose: verify the correctness+specifications
- Comprehensive AC and DC measurements
- May comprise:
 - Scanning Electron Microscope (SEM) Testers
 - Bright-Lite detection of defects
 - Electron beam tests
 - Artificial intelligence (expert system) methods
 - Repeated functional tests

Scanning Electron Microscope

VLSI Test Technology and Reliability, 2009-2010


Determine the exact limits of device operating values

Worst-case test

- Choose test that passes/fails chips
- Select statistically significant sample of chips
- Repeat test for every combination of 2+ environmental variables (measure various DC & AC parameters)
- Plot results in Shmoo plot
- Diagnose and correct design errors
- Develop production test program

Continue throughout production life of chips to improve design and process to increase yield

Shmoo plot

Test stagesProduction Test

- Determines whether manufactured chip meets specs
- Less comprehensive than characterization tests
- Must cover high % of modeled faults
- Must minimize test time (to control cost)
- No fault diagnosis; not repetitive; go/no-go decision
- Test <u>every</u> device on chip
- Test at speed of application or speed guaranteed by supplier

Test stagesBurn-in/Stress Test

Process:

 Subject chips to high temperature & over-voltage supply, while running production tests

Coverage:

Infant mortality

- These are damaged chips that will fail in the first 2 days of operation
- Causes bad devices to actually fail before chips are shipped to customers
- Short term burning (10-30 hours)
- Failures due to sensitive design and process variations

Freak failures

- Devices having same failure mechanisms as reliable devices
- Long term burning (100-1000 hours)

Very expensive! (balance the cost against reliability requirements)

Test stagesIncoming Inspection

Purpose:

- Avoids putting defective device in a system where cost of diagnosis exceeds incoming inspection cost
- Often done for a random sample of devices
 - Sample size depends on device quality and system reliability requirements

Can be:

- Similar to production testing
- More comprehensive than production testing
- Tuned to specific systems application

Manufacturing level tests

Wafer sort or probe

Test site characterization

Packaged device tests

Manufacturing level tests

- Wafer sort or probe test done before wafer is scribed and cut into chips
 - Includes <u>test site characterization</u> specific test devices are checked with specific patterns to measure:
 - Gate threshold
 - Polysilicon field threshold
 - Poly/contact sheet resistance, etc.

Test types: content based

Parametric (DC and AC) tests

Functional tests/ Structural tests

Test types: content based

Parametric (DC and AC) tests

Measures electrical properties of pin electronics: (fast and cheap)

- DC: contact, max I, leakage, threshold, ...
- AC: delay test, set up and hold time, at speed,...

Functional/structural tests

- Used to cover very high % of modeled faults
- Test every transistor and wire in digital circuits
- Long and expensive
- May use different stresses (e.g., guardband)

Main topic of course

Test types.....Electrical/ Parametric

- Observed at the chip pins
- Test modifies observed voltage/current/delay @pin

Two types of electrical faults:

- Major deviation from the specs
- Unacceptable limits of operation

They consist of:

Contact test

Test pins for opens and shorts

DC Tests

Measure steady state electrical characteristics using Ohm's law

AC tests

 Perform measurements using alternative voltages at some frequencies

Test typesDC Parametric Tests

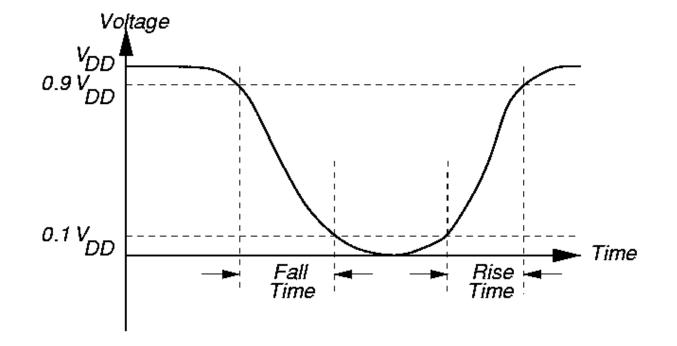
Power Consumption:

Find worst-case power consumption for static and dynamic situations (measure the max current drawn at specified voltage)

Output Short Current

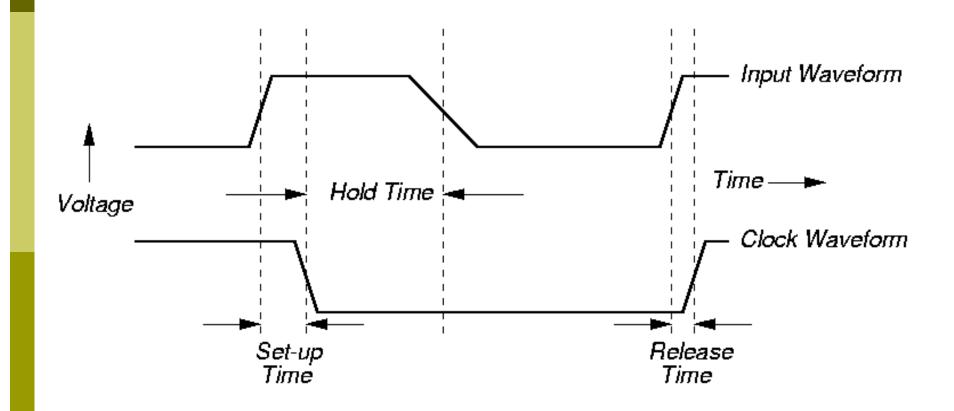
verify that the output current drive is sustained at high and low output voltage

Output Drive Current


For a specified output device current, verify that the output voltage is maintained

Threshold

Determine $V_{\rm IL},~V_{\rm IH}$, $V_{\rm OL}\,and~V_{\rm OH}$

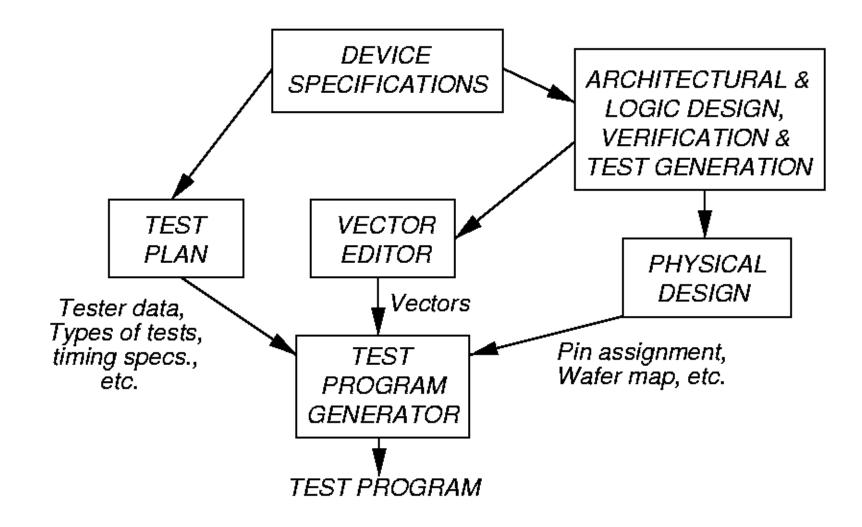

Test typesAC Parametric Tests

- Set-up and Hold Time tests
- Propagation Delay tests
- Rise and Fall Time tests

Test types AC Parametric Tests

Set-up and Hold Time tests

Test Specifications, plan and generation


Test Specifications:

- Functional Characteristics (IO timing, Algorithms, ...)
- Type of Device Under Test (DUT)
- Physical Constraints Package, pin numbers, etc.
- Environmental Characteristics supply, temperature, humidity, etc.
- Reliability acceptance quality level (defects/million), failure rate, etc.

Test plan generated from specifications

- Type of test equipment to use
- Types of tests
- Fault coverage requirement

Test Specifications, plan and generation

Test Specifications, plan and generation

Test Data Analysis

Uses of ATE test data:

- Reject bad DUTs
- Fabrication process information
- Design weakness information

Devices that did not fail are good only if tests covered 100% of faults

Failure mode analysis (FMA)

- Diagnose reasons for device failure, and find design and process weaknesses
- Allows improvement of logic & layout design rules

Automatic Test Equipment (ATE)

- Apply test pattern to *device under test DUT*
- Analyze responses from DUT
- Mark DUT as good or bad

Automatic Test Equipment Components

Powerful computer

- **Test Program** (e.g., written in Test Description Language)
- Test head interface through custom printed circuit board to wafer prober (unpackaged chip test) or package handler (packaged chip test), touches chips through a socket (contactor)
- Probe card custom printed circuit board (PCB) on which DUT is mounted in socket – may contain custom measurement hardware (current test). Interfaces ATE test head to set of probe needles
- Probe needles (Membrane probe) come down and scratch the pads to stimulate/read pins
- Pin electronics (PE) electrical buffering circuits, put as close as possible to DUT (*Channels*; e.g., 1024)

• ..

T6682 ATE Specifications*

- $\hfill\square$ Uses 0.35 μm VLSI chips in implementation
- 1024 pin channels
- Speed: 250, 500, or 1000 MHz
- Timing accuracy: +/- 200 ps
- Drive voltage: -2.5 to 6 V
- Clock/strobe accuracy: +/- 870 ps
- Clock settling resolution: 31.25 ps
- Pattern multiplexing: write 2 patterns in one ATE cycle
- Pin multiplexing: use 2 pins to control 1 DUT pin

ATE Major Cost Reduction

Multi-site Testing

- One ATE tests several devices at the same time
- For both probe and package test
- DUT interface board has > 1 socket
 - Test head designed to handle more multiple packages simultaneously
- Add more instruments to ATE to handle multiple devices simultaneously
- Usually test 2 or 4 DUTs at a time, usually test 32 or 64 memory chips at a time
- Limits:
 - # instruments available in ATE to handle all of the required pins
 - Type of handling equipment available for a given package type

DFT methods and Built-In Self-Test

Automatic Test Equipment

LTX FUSION HF ATE

Summary

- Type of testing
- Parametric tests versus Functional tests
- Typical test program
- D ATE
 - Cost Problems
 - Pin inductance (expensive probing)
 - Multi-GHz frequencies
 - High pin count (1024)
 - ATE Cost Reduction
 - Multi-Site Testing
 - DFT and Built-In Self-Test